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ABSTRACT. We use topological methods to study the complexity of deep com-
putations and limit computations. We use topology of function spaces, specif-
ically, the classification of Rosenthal compacta, to identify new complexity
classes. We use the language of model theory, specifically, the concept of in-
dependence from Shelah’s classification theory, to translate between topology
and computation. We use the theory of Rosenthal compacta to characterize
approximability of deep computations, both deterministically and probabilis-
tically.

INTRODUCTION

In this paper we study asymptotic behavior of computations, e.g., the depth of
a neural network tending to infinity, or the time interval between layers of a time-
series network tending toward zero. Recently, particular cases of this concept have
attracted considerable attention in deep learning research (e.g., Neural Ordinary
Differential Equations [CRBD], Physics-Informed Neural Networks [RPK19], and
deep equilibrium models [BKK]). The formal framework introduced here provides
a unified setting to study these limit phenomena from a foundational viewpoint.

Informed by model theory, to each computation in a given computation model,
we associate a continuous real-valued function, called the type of the computation,
that describes the logical properties of this computation with respect to the rest
of the model. This allows us to view computations in any given computational
model as elements of a space of real-valued functions, which is called the space
of types of the model. The idea of embedding models of theories into their type
spaces is central in model theory. In the context of this paper, the embedding of
computations into spaces of types allows us to utilize the vast theory of topology of
function spaces, known as Cp-theory, to obtain results about complexity of topolog-
ical limits of computations. As we shall indicate next, recent classification results
for spaces of functions provide an elegant and powerful machinery to classify com-
putations according to their levels of “tameness” or “wildness”, with the former
corresponding roughly to polynomial approximability and the latter to exponential
approximability. The viewpoint of spaces of types, which we have borrowed from
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model theory, thus becomes a “Rosetta stone” that allows us to interconnect var-
ious classification programs: In topology, the classification of Rosenthal compacta
pioneered by Todorcevié [Tod99]; in logic, the classification of theories developed
by Shelah [She90]; and in statistical learning, the notions of PAC learning and VC
dimension pioneered by Vapnik and Chervonenkis [VC74, VC71].

In a previous paper [ADIW24], we introduced the concept of limits of compu-
tations, which we called ultracomputations (given they arise as ultrafilter limits of
standard computations) and deep computations (following usage in machine learn-
ing [BKK]). There is a technical difference between both designations, but in this
paper, to simplify the nomenclature, we will ignore the difference and use only the
term “deep computation”.

In [ADIW24], we proved a new “tame vs wild” (i.e., polynomial vs exponential)
dichotomy for the complexity of deep computations by invoking a classical result
of Grothendieck from the 1950s [Gro52]. Under our model-theoretic Rosetta stone,
the property of polynomial approximability of computations is identified with con-
tinuous extendibility in the sense of topology, and with the notions of stability and
type definability in model theory.

Simplest among deep computations are those arising as pointwise limits of (con-
tinuous) computations proper. In topology, the first Baire class, or Baire class 1
consists of functions (also called simply “Baire-1”) arising as pointwise limits of se-
quences of continuous functions. Intuitively, the Baire-1 class consists of functions
with “controlled” discontinuities, and lies just one level of topological complexity
away from the Baire class 0 which (by definition) consists of continuous functions.

We prove a new “tame vs wild” Ramsey-theoretic dichotomy for complexity of
general deep computations by invoking a famous paper by Bourgain, Fremlin and
Talagrand from the late 70s [BFT78], and a new trichotomy for the class of “tame”
deep computations by invoking an equally celebrated result of Todor¢evié, from the
late 90s, for functions of the first Baire class [Tod99].

Todorcevié’s trichotomy regards Rosenthal compacta; these are special classes of
topological spaces, defined as compact spaces that can be embedded (homeomor-
phically identified as a subset) within the space of Baire class 1 functions on some
Polish (separable, completely metrizable) space, under the pointwise convergence
topology. Rosenthal compacta exhibit “topological tameness,” meaning that they
behave in relatively controlled ways; since the late 70’s, they have played a crucial
role in understanding the complexity of structures of functional analysis, especially
Banach spaces. Todorcevié¢’s trichotomy has been utilized to settle longstanding
problems in topological dynamics and topological entropy [GM22]. It is notewor-
thy that Todorc¢evié¢’s proof relies on sophisticated set-theoretic forcing and infinite
Ramsey theory. At the moment of writing this paper, decades after his original
argument, no elementary proof has been found.

Through our Rosetta stone, Rosenthal compacta in topology correspond to the
important concept of “Non Independence Property” (known as “NIP”) in model
theory, identified by Shelah [She71, She90], and to the concept of Probably Ap-
proximately Correct learning (known as “PAC learnability”) in statistical learning
theory identified by Valiant [Val84].

Going beyond Todorcevié’s trichotomy, we invoke a more recent heptachotomy
for Rosenthal compacta obtained by Argyros, Dodos and Kanellopoulos [ADKO0S];
they identify seven fundamental “prototypes” of separable Rosenthal compacta,
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and show that any non-metrizable separable Rosenthal compactum must contain
a “canonical” embedding of one of these prototypes. They also showed that if a
separable Rosenthal compactum is not hereditarily separable, then it must contain
an uncountable discrete subspace of the size of the continuum.

We believe that the results presented in this paper show practitioners of com-
putation, or topology, or descriptive set theory, or model theory, how classification
invariants used in their field translate into classification invariants of other fields. In
the interest of accessibility, we do not assume the reader to have previous familiarity
with advanced topology, model theory, or computing. The only technical prereq-
uisites to read this paper are undergraduate-level topology and measure theory.
The necessary topological background beyond undergraduate topology is covered
in section 1.

In section 1, we present basic topological and combinatorial preliminaries, and
in section 2, we introduce the structural/model-theoretic viewpoint (no previous
exposure to model theory is needed). Section 3 is devoted to the classification of
deep computations.

Throughout the paper, our results pertain to classical models of computation
(particularly computations involving real-valued quantities that are known and ma-
nipulated to a finite degree of precision). The final Section 4 introduces a probabilis-
tic viewpoint, whose development we intend to pursue in future research, extending
the present framework to encompass non-deterministic and quantum computations.
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1. GENERAL TOPOLOGICAL PRELIMINARIES: FROM CONTINUITY TO BAIRE
CLASS 1

In this section we present some preliminaries from general topology and function
space theory. We include the proofs of some results for the sake of completeness;
they may be safely skipped by readers familiar with these topics.

Recall that a subset of a topological space is F}, if it is a countable union of closed
sets, and Gy if it is a countable intersection of closed sets. A space is metrizable if
its topology agrees with the topology induced by some metric therein. Two such
metrics inducing the same topology may induce quite different properties in the
category of metric spaces. For example, the interval (0, 1) with the usual metric (as
a subset) of the reals is not complete; however, (0, 1) is homeomorphic to the real
line, which is complete with respect to the usual metric thereon. In a metrizable
space, every open set is F,; equivalently, every closed set is Gj.

A Polish space is a separable and completely metrizable topological space, i.e.,
admitting some complete metric inducing its topology. Although other (possibly
incomplete) metrics may induce the same topology, being Polish is a purely topolog-
ical property. One of the most important Polish spaces is the real line R; the others
include the Cantor space 2 and the Baire space NY. The class of Polish spaces
is closed under countable topological products; in particular, the Cantor space 2V
(the set of all infinite binary sequences, endowed with the product topology), the
Baire space N (the set of all infinite sequences of naturals, also with the product
topology), and the space RY of sequences of real numbers are all Polish.

Fact 1.1. A subset of a Polish space is itself Polish in the subspace topology if and
only if it is a G set. In particular, closed subsets and open subsets of Polish spaces
are also Polish spaces.

For a proof, see [Eng89, 4.3.24].

Given two topological spaces X and Y we denote by C,(X,Y) the set of all con-
tinuous functions f : X — Y endowed with the topology of pointwise convergence.
The space Cp(X,R) of continuous real functions on X is denoted simply C,(X).
A natural question is, how do topological properties of X translate into Cp,(X)
and vice versa? This general question, and the study of these spaces in general, is
the concern of C),-theory, an active field of research in general topology which was
pioneered by A. V. Arhangel’skii and his students in the 1970’s and 1980’s [Ark92].
This field has found many applications in model theory and functional analysis.
For a recent survey, see [Tkall].

A Baire class 1 function between topological spaces is a function that can be
expressed as the pointwise limit of a sequence of continuous functions. If X and Y
are topological spaces, the space of Baire class 1 functions f : X — Y endowed with
the topology of pointwise convergence is denoted By (X,Y) (as above, B1(X,R) is
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denoted B1(X)). Clearly, Cp,(X,Y) C B1(X,Y). The Baire hierarchy of functions
was introduced by René-Louis Baire in his 1899 doctoral thesis, Sur les fonctions de
variables réelles. His work moved away from the 19th-century preoccupation with
“pathological” functions toward a constructive classification based on pointwise
limits.

A topological space X is perfectly normal if it is normal and every closed subset
of X is a G5 (equivalently, every open subset of X is a F,;). Every metrizable space
(hence, every Polish space) is perfectly normal.

A topological space X is Baire if every countable intersection of dense open sets
is dense. The Baire Category Theorem states that every completely metrizable
space (hence, every Polish space) is Baire.

The following fact was established by Baire in his 1899 thesis. A proof can be
found in [Tod97, Section 10].

Fact 1.2 (Baire). If X is perfectly normal, then the following conditions are equiv-
alent for a function f: X — R:

(1) f is a Baire class 1 function, that is, f is a pointwise limit of continuous
functions.
(2) f7YU] is an F, subset of X whenever U CY is open.

If X is Baire, then (1) and (2) are equivalent to:
(3) For every closed F C X, the restriction f|p has a point of continuity.

Moreover, if X is Polish and f ¢ By(X), then there exist countable Do, D1 C X
and reals a < b such that

Dogf_l(—oo,a], Dlgf_l[b7oo)a DfOZDil

A subset L of a topological space X is relatively compact in X if the closure of L
in X is compact. Relatively compact subsets of By (X) (for X Polish) are of interest
analysis and topological dynamics. We begin with the following well-known result.
Recall that a set A C RX of real-valued functions is pointwise bounded if for every
x € X there is M, > 0 (a pointwise bound at x) such that |f(z)|] < M, for all
f € A. We include a proof for the reader’s convenience:

Lemma 1.3. Let X be a Polish space and A C B1(X) be pointwise bounded. The
following are equivalent:

(i) A is relatively compact in By(X).

(i) A is relatively countably compact in B1(X), i.e., every countable subset of A

has an accumulation point in By(X).
(iii) A C B1(X), where A denotes the closure in RX.

Proof. (i)=-(ii) Relative compact subsets of any space are countably compact therein.
(ii)=>(iii) Consider any f € A and any countable subset {x;};en € X. We claim
that there is a sequence {f,}nen € A such that lim, e frn(z;) = f(z;) for all
1 € N. Since A carries the relative product topology, for each n € N there exists
fn € A such that |f,(z;) — f(x;)| < L for all i < n; the sequence {f,} is as claimed.
Seeking a contradiction, assume that A is relatively countably compact in B (X),
but there exists some f € A\ By(X). By Fact 1.2, there are countable Dy, D1 C X
with Dy = Dy, and a < b such that Dy C f~1(—o00,a] and Dy C f~1[b,00). Per
the claim above, let {f, }nen C A satisfy lim, o frn(z) = f(z) for all x € Dy U Dy
(the latter being a countable set). By relative countable compactness of A, there is
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an accumulation point g € By (X) of {f,}nen; clearly, f and g agree on Do U Dj.
Thus g takes values g(z;) = f(x;) < a as well as values g(z;) = f(z;) > b>a on
any open subset of the closed set Dy = Dy, contradicting the implication (1)=-(3)
in Fact 1.2.

(iii)=(i) For each z € X, let M, > 0 be a pointwise bound for A thereat.
Being necessarily a closed subset of the compact space (being product of compacta)
[Loex =M., M,] C RX, it follows that A is compact; by (iii), it is also the closure
of Ain By(X) a fortiori. Thus, A is relatively compact in B (X). O

1.1. From Rosenthal’s dichotomy to the Bourgain-Fremlin-Talagrand di-
chotomy to Shelah’s NIP. In metrizable spaces, points of the closure of some
subset can always be approximated by points in the set proper, via a convergent
sequence. For more complicated spaces, such as Cp-spaces, this fails in remarkable
ways. The n-th coordinate map p, : 2V — {0,1} on the Cantor space X = oN
(= {0,1}Y) is continuous for each n € N, and one can show (e.g., [Tod97, Chap-
ter 1.1]) that {p, }nen is closed, but has no convergent subsequences, in Y = C,(X):
in a sense, such example exhibits the worst failure of sequential convergence possi-
ble. The closure of {p,} in {0,1}¥ (or in R¥ for that matter) realizes the Stone-
Cech compactification BN of the discrete space of natural numbers; it is an impor-
tant object of study in general topology.

The following theorem, proved by Haskell Rosenthal in 1974, is fundamental in
functional analysis and captures a sharp division in the behavior of sequences in a
Banach spaces.

Theorem 1.4 (Rosenthal’s Dichotomy, [Ros74]). If X is Polish and {f,} C Cp(X)
is pointwise bounded, then {f,}nen has a convergent subsequence, or a subsequence
whose closure in RX is homeomorphic to BN.

Rosenthal’s Dichotomy states that a pointwise bounded set of continuous func-
tions contains either a convergent subsequence, or a subsequence whose closure is
essentially the same as the example mentioned in the previous paragraphs (i.e.,
“wildest” possible). The genesis of this theorem was Rosenthal’s “/;-Theorem”,
which states that a Banach space includes an isomorphic copy of ¢; (the space of
absolutely summable sequences), or else every bounded sequence therein is weakly
Cauchy. The ¢;-Theorem connects diverse areas: Banach space geometry, Ramsey
theory, set theory, and topology of function spaces.

As we move from Cp(X) to the larger space B1(X), a dichotomy paralleling the
£1-Theorem holds: Either every point of the closure of a set of functions is a Baire
class 1 function, or there is a sequence in the set behaving in the wildest possible
way. This result is usually not phrased as a dichotomy, but rather as an equivalence
as in Theorem 1.5 below.

First, we introduce some useful notation. For any set A C RX and any real a,
define

XZ,= ) f ' (~oc,a] = {z € X : f(x) <aforall fe A},
C fea

X4, =) f'a,+o0) = {z € X : f(x) > a for all f € A}.
feA
(In case A = 0, we define Xga =X = Xga.) For any sequence {f,} € RX and
I CN, define I8 := N\ I and f; == {f; :i € I}.
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Theorem 1.5 (“The BFT Dichotomy”. Bourgain-Fremlin-Talagrand [BFT78]).
Let X be a Polish space and A C Cp(X) be pointwise bounded. The following are
equivalent:

(i) A is relatively compact in By (X).
(i) For every {fn}nen C A and every a < b there is I C N such that Xé’aﬁngc =
0.

(As stated above, the BFT Dichotomy is a particular case of the equivalence
(il)<(v) in [BFT78, Corollary 4G].)

The sets X i’a and Xifbc appearing in condition Theorem 1.5(7i) are defined,
respectively, in terms of \}\—many inequalities of the form f;(z) < a, and |I¢|-many
of the form f;(x) > b. Thus, at least one of Xﬁ’a and Xi’bc is defined by the
satisfaction of infinitely (countably) many inequalities. For our purposes, it is more

natural to consider only finitely many inequalities at a time, which motivates the
definitions below.

Definition 1.6. We say that a function collection A C RX has the finitary No-
Independence Property (NIP) if, for all sequences {f,}neny € A and reals a < b,
there exist finite disjoint sets E, F' C N such that Xﬁ’i N Xi‘,; = (). We say that
such E, F witness finitary NIP for A, {f,} and a,b. B

A set A C RX has the finitary Independence Property (IP) if it does not have
finitary NIP, i.e., if there exists a sequence {f, }nen C A and reals a < b such that
for every pair of finite disjoint sets E, F' C N, we have Xéﬁ N XQZ £ .

If the word “finite” is omitted in the above definitions, we obtain the definitions of
countable NIP (weaker than finitary NIP) and countable TP (stronger than finitary
IP), respectively.

If we insist on witnesses F, F' C N such that F' = EG, we call the respective
properties “BFT-NIP” (even weaker than countable NIP) and “BFT-IP” (even
stronger than countable IP). Thus, Theorem 1.5 becomes that statement, for point-
wise bounded function collections A C C,(X), that A is relatively compact in
B;(X) if and only if A has BFT-NIP.

Unless otherwise unspecified, IP/NIP shall mean finitary IP/NIP henceforth.

Proposition 1.7. If X is compact and A C C,(X), then A has BFT-NIP if and
only if it has finitary NIP.

(No pointwise boundedness is assumed of A.)

Proof. Trivially (as per the preceding discussion), finitary NIP implies BFT-NIP.
Reciprocally, assume that X is compact and has finitary IP. Fix A C C,(X), a
sequence {f,} C A and reals r < s. For any I,J C N (eventually disjoint in
applications), write X; ; for Xfr N Xi‘; For ] C I’ CNand J C J CN, we
have X ; O Xp j; moreover, X[,J = ﬁECLFC] Xg,F, where the index variables
E C I, F C J range over finite subsets of I,J, respectively. Clearly, E,F C N
witness finitary NIP for {f,} if and only if X ¥ = (.

Fix I C N. Since {f,} € A C Cp(X) is a sequence of continuous functions, and
X is compact, the nested family {Xgr: E C I,F C IC} consists of closed, thus
compact, sets. Since A has finitary IP by hypothesis, the nested family consists
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of nonempty sets, hence its intersection X; jc # () by compactness. This holds for
arbitrary {f,} C A and r < s, so A has BFT-IP. O

Theorem 1.8. Let X be a metrizable compact (hence Polish) space. For every
pointwise bounded A C Cp(X), the following properties are all equivalent:
(i) A is relatively compact in By(X);
(ii) A has BFT-NIP;
(iii) A has countable NIP;
(iv) A has finitary NIP.

(The equivalences (%)< (i1i)< (iv) hold for arbitrary compact X.)
Proof. Corollary of Theorem 1.5 and Proposition 1.7. O

Theorem 1.8 may be stated as the following dichotomy (under the assumptions):
either A is relatively compact in B;(X), or A has IP (in either sense).

The Independence Property was first isolated by Saharon Shelah in model theory
as a dividing line between theories whose models are “tame” (corresponding to NIP)
and theories whose models are “wild” (corresponding to IP). See [She71, Definition
4.1], [She90]. We will discuss this dividing line in more detail in the next section.

1.2. NIP as a universal dividing line between polynomial and exponen-
tial complexity. The particular case of the BFT dichotomy (Theorem 1.5) when
A consists of {0,1}-valued (i.e., {Yes, No}-valued) strings was discovered inde-
pendently, around 1971-1972 in many foundational contexts related to polyno-
mial (“tame”) vs exponential (“wild”) complexity: In model theory, by Saharon
Shelah [She71], [She90], in combinatorics, by Norbert Sauer [Sau72], and She-
lah [She72], [She90], and in statistical learning, by Vladimir Vapnik and Alexey
Chervonenkis [VC71], [VC74].

In model theory: Shelah’s classification theory is a foundational program
in mathematical logic devised to categorize first-order theories based on
the complexity and structure of their models. A theory T is considered
classifiable in Shelah’s sense if the number of non-isomorphic models of T
of a given cardinality can be described by a bounded number of numerical
invariants. In contrast, a theory T is unclassifiable if the number of models
of T of a given cardinality is the maximum possible number. A key fact
is that the number of models of T is directly impacted by the number of
types over sets of parameters in models of T'; a controlled number of types
is a characteristic of a classifiable theory.

In Shelah’s classification program [She90], theories without the indepen-
dence property (called NIP theories, or dependent theories) have a well-
behaved, “tame” structure; the number of types over a set of parameters
of size K of such a theory is of polynomially or similar “slow” growth on k.

In contrast, theories with the Independence Property (called IP theories)
are considered “intractable” or “wild”. A theory with the Independence
Property produces the maximum possible number of types over a set of
parameters; for a set of parameters of cardinality x, the theory will have
22"_many distinct types.

In combinatorics: Sauer [Sau72] and Shelah [She72] proved the following
independently: Let .# be a family of subsets of some set S. Either: for every
n € N there is a set A C S with |A| = n such that [{S;NA:ie N} =2"
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(& has “exponential complexity”); or: there exists N € N such that for
every A C S with |A| > N, one has

{SinA:ieN} gNi ("?').

=0

(Z has “polynomial complexity”). Clearly, any family .% of subsets of a
finite set S has polynomial complexity. The “polynomial” name is justified:
indeed, for fixed N > 0, as a function of the size |A| = m > 0, we have

N-1 o N1 N-1
Z (z) < ZT;S <Z z') mN " <e-mNTt =0 (m").

i=0 =0 =0

(More precisely, the order of magnitude is O(m~~1): polynomial in m for
N fixed.)

In machine learning: Readers familiar with statistical learning may rec-
ognize the Sauer-Shelah lemma as the dichotomy discovered and proved
slightly earlier (1971) by Vapnik and Chervonenkis [VC71, VC74] to ad-
dress uniform convergence in statistics. The least integer N given by the
preceding paragraph, when it exists, is called the VC-dimension of .7 ; it
is a core concept in machine learning. If such an integer N does not ex-
ist, we say that the VC-dimension of .% is infinite. The lemma provides
upper bounds on the number of data points (sample size) needed to learn
a concept class of known VC dimension d up to a given admissible error
in the statistical sense. The Fundamental Theorem of Statistical Learning
states that a hypothesis class is PAC-learnable (PAC stands for “Probably
Approximately Correct”) if and only if its VC dimension is finite.

1.3. Rosenthal compacta. The universal classification implied by Theorem 1.5,
as attested by the examples outlined in the preceding section, led to the following
definition (by Gilles Godefroy [God80]):

Definition 1.9. A Rosenthal compactum is any topological space realized as a
compact subset of the space Bi(X) = Bi(X,R) (equipped with the topology of
pointwise convergence) of all real functions of the first Baire class on some Polish
space X.

A Rosenthal compactum K is necessarily Hausdorff since it is a topological
subspace of the Hausdorff product space R¥.

Rosenthal compacta possess significant topological and dynamical tameness prop-
erties, and play an important role in functional analysis, measure theory, dynamical
systems, descriptive set theory, and model theory. In this paper, we use them to
study deep computations. For this, we shall first focus on countable languages,
which is the theme of the next subsection.

1.4. The special case B;(X,R?) with P countable. Fix an arbitrary (at most)
countable set P whose elements P € P will be called predicate symbols or for-
mal predicates. Our present goal is to characterize relatively compact subsets of
B1(X,R?), where X is always assumed to be a perfectly normal space (often a
Polish space).
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The set P shall be considered discrete whenever regarded as a topological space.
Since Cp(X,R”?) C By (X,R?) C (RT)X, the “ambient” space (R¥)¥X is quite rele-
vant. The product X x P will be regarded as either a pointset, or as a topological
product depending on context. We have natural homeomorphic identifications

(R?)X ~ RXX? ~ (RX)T7
given by
RXXT N (RT)X . (p HASO
RV — (R¥)T 1o ¢
where
(x) = p(z,) €RY, ©(P) = ¢(,P) eR.

Such identifications view X and P as mere pointsets (the topology of X in particular
plays no role).
For x € X, define the “left projection” map

Aot REXT SRY 0 M\ (9) = o(x,-);
for P € P, the “right projection” map
pp RX*P S RX o o, P).
For fixed x € X and P € P, we also have canonical projection maps
7. :RY SR f e f(2), mp:RY 5 R: f f(P).

When clear from context, rather than using the specific symbols (“\” for left,“p”
for right) to denote projections, we may use the generic symbol “7”; thus, 7, may
mean \,, and Tp may mean pp.

The proposition below reduces the study of R”-valued continuous or Baire-1
functions on X to the special case of real-valued ones.

Proposition 1.10. The identification (R¥)X = RX*% = (RX)? induces identifi-
cations

Co(X,R?) =2 C\(X x P) = Cp(X)”, Bi(X,R?) =By (X x P) = B(X)”.
(The cardinality of P plays no role.)

Proof. The identification of C)-spaces follows trivially from the definition of topo-
logical product and the fact that P is discrete: a continuous map X — R” is
precisely a P-tuple of continuous functions X — R, and these correspond to contin-
uous functions X x P — R. The identification of Baire-1 spaces follows immediately,
since it is defined in terms of the purely topological notion of limit (in the ambient
space) of sequences of continuous functions. [l

Given A C YX and K C X we write A|x = {f|k : f € A}, ie., the set of
all restrictions of functions in A to K. The following Theorem is a slightly more
general version of Theorem 1.5.

Theorem 1.11. Assume that P is countable, X is a Polish space, and A C
Cp(X,R?) is pointwise bounded in the sense that mp o A (C Cp(X)) is pointwise
bounded for every P € P. The following are equivalent for every compact K C X:
(i) A|k is relatively compact in By(K,R”);
(ii) mp o A|k has NIP for every P € P.
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Proof. Compact subsets K C X are closed, hence also Polish. Therefore, the
asserted equivalence follows from Theorems 1.5 and 1.7. O

Lastly, a simple but useful lemma that helps understand when we restrict a set
of functions to a specific subspace of the domain space, we may always assume that
the subspace is closed, as replacing the subspace by its closure has no effect on NIP.

Lemma 1.12. Assume that X is Hausdorff and that A C Cp(X). The following
are equivalent for every L C X :

(i) Ap satisfies the NIP.
(i1) Alx satisfies the NIP.

Proof. Tt suffices to show that (i)=-(ii). Suppose that (ii) does not hold, i.e., that
there are {f,}nen C A and a < b such that for all finite disjoint E, F C N:

LN () fit(=oc.aln () £t [bsoo) # 0.
nek neF
Pick @’ < b’ such that a < a’ < b’ < b. Then, for any finite disjoint £, F C N we
can choose
reLn () fi'(=o0,a)n () £ (V,00)
nek ner
By definition of closure:

L () £ (=00, d1n () £ 'V, 00) # 0.

nekr ner
This contradicts (i). O

2. CoMPOSITIONAL COMPUTATION STRUCTURES: A STRUCTURAL APPROACH
TO FLOATING-POINT COMPUTATIONS

In this section, we connect function spaces with floating point computations. We
start by summarizing some basic concepts from [ADIW24].

A computation states structure is a pair (L, P), where L is a set whose elements we
call states and P is a collection of real-valued functions on L that we call predicates.
For a state v € L, the type of a state v is the indexed family

tp(v) = (P(v))per € R”.
For each P € P, we call the value P(v) the P-th feature of v. A transition of a
computation states structure (L, P) is a map f: L — L.

Intuitively, L is the set of states of a computation, and the predicates P € P are
primitives that are given and accepted as computable. Each state v € L is uniquely
characterized by its type tp(v), so we may identify L with a subset of R¥. Important
space states are L = RY and L = R™ for some positive integer n, endowed with
predicate P;(v) = v;, one each for the i-th coordinate of v. We regard the space of
types as a topological space, endowed with the topology of pointwise convergence
induced by the product topology of R”. Via the identification v + tp(v), the states
space L is correspondingly topologized; in particular, for each P € P, the projection
map v — P(v) is continuous.

Definition 2.1. Given a computation states structure (L, P), any element of R? in
the image of L under the map v — tp(v) will be called a realized (state) type. The
topological closure of the set of realized types in R” (endowed with the pointwise
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convergence topology) will be called the space of types of (L, P), denoted £; elements
€ € L are called state types. Elements of £\ L will be called unrealized types.

Intuitively, state types capture a notion of “ultrastate”.

The traditional setting of discrete first-order logic may be regarded as the special
case in which predicates are binary (such predicates may take only the values 0
and 1, say). In such a traditional setting, the space of types of a structure is
necessarily compact; for some purposes, it serves as a sort of compactification of
the structure itself. Compactness in such setting is critical. However, predicates
of a computational states structure take values in the non-compact space R, so
the corresponding type space £ need not be compact. To bypass this obstacle, we
follow the idea, introduced in [ADIW24], of covering £ by “thin” compact subspaces
called shards.

Definition 2.2. A sizer is a tuple 14 = (rp) pep of positive real numbers, indexed
by P. Given a sizer r,, let Rl"s] = [Ipepl—7P,7P] (a compact space), and let the
re-shard of a states space L be

L[rs] = LNR)

For a sizer ro, the re-type shard is defined as L[re] = L[rs] (a closed, hence
compact subset of RI"]).
Let also Lg, be the union of all type-shards (as the sizer ro varies).

In general, L, C £ may be a proper subset. Equality holds in the important
special case when P is countable (see *** below).

2.1. Compositional Computation Structures.

Definition 2.3. A Compositional Computation Structure (CCS) is a triple (L, P,T'),
where

e (L,?P) is a computation states structure, and
e I' C L” is a semigroup under composition.

Elements of the semigroup I" are called the computations of the structure (L, P,T).
We assume that the identity map id on L is an element of I' (which is thus not
merely a semigroup but a monoid of transformations of L).

We topologize I' as a subset of the topological product L¥, where the “expo-
nent” L serves merely as an index set, but the “base” L is topologized by type;
consequently, one may identify I' with a subset of the topological product (R”)L.
More specifically, T' is identified with a subset of £, which is a closed subspace
of (R?)E. Therefore, we have an inclusion I' C £F. Elements ¢ € T are called
(real-valued) deep computations or ultracomputations.

A collection R of sizers is ezhaustive if L = J, <y L[re] (shards L[re] exhaust L).
A transformation v € I' is R-confined if ~y restricts to a map |r[.,] : L[re] — L[re]
(into L[re] itself) for every ro € R. A subset A C T is R-confined if each v € A is.

Proposition 2.4. If A C T is confined by an ezhaustive sizer collection, then A
is a compact subset of LX .

Proof. Assume that R confines A. For each v € L, let r{") € R be a sizer such that
v e L[rsv)]. An arbitrary v € A restricts to a map vy | L[’I’EU)] : L[rsv)] — L[’I’EU)],
sol' C K = HUGLL[T?))]. The space K is a product of compact spaces, hence
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compact, so I is a closed, hence compact subset thereof, and a subset of LSLh oK
a fortiori. ([l

For a CCS (L,P,T'), we regard the elements of " as “standard” finitary compu-
tations, and the elements of I, i.e., deep computations, as possibly infinitary limits
of standard computations. The main goal of this paper is to study the computabil-
ity, definability and computational complexity of deep computations. Since ultra-
computations are defined through a combination of topological concepts (namely,
topological closure) and structural and model-theoretic concepts (namely, models
and types), we will import technology from both topology and model theory.

2.2. Computability and definability of deep computations and the Ex-
tendibility Axiom. Let f : L — £ be a function that maps each input state type
(P(v))pep € R” to an output state type (P o f(v))pep € R”.

(1) We will say that f is definable if for each @ € P, the output feature
Qof : L — R is a definable predicate in the following sense: There is
an approzimating function ¢g k. : L — L that can be built recursively
out of a finite number of the (primitively computable) predicates in P and
by a finite number of iterations of the finitary lattice operations A (=min)
and V (=max), the operations of R® as a vector algebra (that is, vector
addition and multiplication and scalar multiplication) and the operators
sup and inf applied on individual variables from L, and such that

loqQ, ke (v) — Qof(v)] <, for all v € K.

Remark: What we have defined above is a model-theoretic concept; it
is a special case of the concept of first-order definability for real-valued
predicates in the model the theory of real-valued structures first introduced
in [Iov94] for model theory of functional analysis and now standard in model
theory (see [Kei03]). The A (=min) and V (=max) operations correspond
to the positive Boolean logical connectives “and” and “or”, and the sup
and inf operators correspond to the first-order quantifiers, ¥V and 3.

(2) We will say that f is computable if it is definable in the sense defined above
under (1), but without the use of the sup/inf operators; in other words, if
for every choice of @, K, ¢, the approximation function ¢g k. : L — £ can
be constructed without any use of sup or inf operators. This is quantifier-
free definability (i.e., definability as given by the preceding paragraph, but
without use of quantifiers), which, from a logic viewpoint, corresponds to
computability (the presence of the quantifiers 3 and V are the reason behind
the undecidability of first-order logic).

It is shown in [ADIW24] that:

(1) For a definable f : L — £, the approximating functions ¢ k. may be
taken to be polynomials of the input features, and

(2) Definable transforms f : L — £ are precisely those that extend to contin-
uous f L= L.

To summarize, a function f : L — £ is computable if and only if it is definable
if and only if it is polynomially approximable if and only it can be extended to a
continuous f : £ — L. This motivates the following definition.
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Definition 2.5. We say that a CCS (L, P,T) satisfies the Extendibility Aziom if
for all v € T, there is 7 : L, — Lgn such that for every sizer ro there is a sizer s,
such that 5|z, : £[re] — L[se] is continuous. We refer to ¥ as a free extension
of ~.

By the preceding remarks, the Extendibility Axiom says that the elements of
the semigroup I' are finitary computations. For the rest of the paper, fix for each
v €T a free extension 7 of 5. For any A C T, let A denote {7: v € A}.

For a more detailed discussion of the Extendibility Axiom, we refer the reader
to [ADIW24].

2.3. Newton’s method as a CCS. Let p(z) be a non-constant polynomial with
complex coefficients. Newton’s method is an iterative method that is used to ap-
proximate a root of p(z). Define the Newton map as:

p(2)
Ny(z) =2z —
(%) P'(z)
The method consists of taking an initial guess zg € C and iterating the rational
map N, to obtain a sequence given by

p(2n)

P'(zn)

For each root r € C of p(z), there exists € > 0 such that for any initial guess zy in
the e-ball centered at r, Newton’s iteration converges to r (provided p’(r) # 0) and
the convergence is quadratic in that case.

Denote by N, := N, o N,o---0N, (nth iteration of N,). Given a root r of
p(z), the set B, = {z € C : lim,, ;o N'(2) = 7} is an open set called the basin of
r. However, Newton’s method can fail to converge to any root for some choices of
2g. For example, consider the polynomial p(z) = 23 — 2z + 2. The Newton map is
given by

Znt1 = Np(2n) = 25, —

22 =242 223-2
322-2 322-2

Notice that taking zgp = 0 as an initial guess will yield the sequence 0,1,0,1,0,1,...
that oscillates between 0 and 1 but none of them are roots of p(z). Another more
chaotic way Newton’s method can fail to converge is when the sequence of iterations
has no convergent subsequence. The set of such points is known as the Julia set
associated to IV, and it is typically a fractal. This is easiest to visualize by adding a
dash of color: let us give each complex number zj a color (R, G, B) where R, G, B €
[0,1] (so that (1,0,0) is red, (0,1,0) is green, (0,0,1) is blue and (0.5,0,0.5) is a
light purple, for example). The values of R, G and B are determined by looking
at the image of said number at each stage of the iteration, N;'(zo), and computing
the current distance to each of the roots of p(z); so R = 1/d, where d,. is the
positive distance to the root which is colored red, and so on. In this way, the roots
themselves are colored red, green, and blue, and every other point gets a mix of the
three colors. As the number of iterations increases, each point gets a sharper color,
as the sequence of images {IN;'(20)}5Z; converges to one of the three roots. Each
stage, the complex plane looks as if out of focus because the coloring function is
continuous. As the reader can see in Figure 1, the points at the boundary of each
color class form the famous Newton fractal (of which, interestingly, Newton was
unaware).

Np(z) =ZzZ=
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(A) After 1 iteration ) After 3 iterations (c) After 100 iterations

FIGURE 1. Newton’s method approximating p(z) = 2% — 2z + 2.
Notice the regions of divergence.

Another example of a Newton’s fractal is for p(z) = 2® — 1. The roots of p(z)
are the 3rd roots of unity and the Newton map is given by:

-1 22341
322 322
In this case, there are three basins of atraction (one for each root) and the
complement of their union is the Julia set, i.e., the common boundary.

(A) After 1 iteration ) After 3 iterations (c) After 100 iterations

Ny(z) =2z —

FIGURE 2. Newton’s method approximating p(z) = 2% — 1.

We can frame Newton’s method as a CCS (satisfying the Extendibility Axiom)
as follows. Given a non-constant polynomial p(z), let L C C be the complement of
the Julia set (this is called the Fatou set) associated to IN,. This is the set where
Newton’s method is tame. By Corollary 4.6 in [Bla84], L is open and dense in C.
Let P = { Py, P», P} where the map z — (Py(z2), P2(z), P3(z)) is the stereographic
projection into the Riemann Sphere S2, i.e.,

_ 2Re(2)
P& =
Py(z) = 2Im(z)

|22 + 1



16

DUENEZ, IOVINO, MATOS-WIEDERHOLD, SALVETTI, TALL

_ -1
IREERE!

P3(Z)

Since L is dense in the extended complex plane, then £ = S2?. Computations are
the iterations of Newton’s method, i.e., A =T = {N;' : n € N}. Then, (L,P,T)
is a CCS. Since all computations IN,' are rational maps, they can be continuously
extended to the extended complex plane C = C U {oo}, i.e., to £. In particular,
(L,P,T) satisfy the Extendibility Axiom. The set of deep computations A might
behave different for various polynomials.

Examples 2.6. The following are illustrative examples.

(1)

Computation of square roots. Let a be a positive real number. Let
(L,P,T) be the CCS associated to the real-valued Newton’s method for
p(z) = 22 — a. In other words, L = R\{0} and N, : L — L is given by

:v2+a
2x

P = (P, Py) where x — (P (z), Py(x)) is the stereographic projection into
ST CR? ie.,

Np(z) =

2x
11)1(96):9627+1
x?—1
P =0y

Note that £ = S! and that each iterate N can be continuously extended
to the extended real line R U {co}, i.e., £. For example,

2
Y rta zel
Np(m):{ ég z=0,00

For every initial guess = € L, the limit f(z) = lim, .. N} (z) converges
pointwise to one of the roots. Moreover,

Va, >0
fa={ Vo 570

Notice that f can be extended to £ by

Vva, x>0
fl@)=¢ —va, x<0

oo, x=0,00

However, f : £ — £ is not continuous. The set A of deep computations is
A U {f} - Bl(Lvﬁ)'

Newton’s method for p(z) = 2® — 22 + 2. Let 71, 72 and r3 be the three
roots of p(z). Let B, By and Bs be their respective basins. Let B be
the basin of the attractive cycle 0,1,0,1,.... Let J be the Julia set, i.e.,
the complement of B U Ule B;. Notice that N;' does not converge point-
wise. However, the subsequences Ng” and Ng”“ are pointwise convergent
to functions f; and f; respectively. f; and fy are two distinct deep com-
putations. Note that for z € J, no subsequence of Ng(z) converges to a
complex number. However, since £ = S? is compact there is a subsequence
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of ]\7;}(2) that converges to co. We can extend f; : L — £ to fi : £ — £

by:
fl(z) _ { fi(z), z¢J

o, z€J
Again, note that f; for i = 1,2 are not continuous and that f; € A.

2.4. Finite precision threshold classifiers as a CCS. Recall that the Cantor
space L := 2N consisting of all infinite binary sequences with the topology of
pointwise convergence, can be structurally identified with the binary representations
of real numbers in the interval [0,1]. Using this identification to define the order,
but retaining the product topology for continuity, we consider the following CCS
(L,P,T'), where P = {p,, : n € N} is the collection of projections such that p,(z) =
x(n) for each n and each z € L. Given a finite binary string w and z € L, we
consider the function ¢,, : L — L given by the rule

1°°, x Llex W
%(x)_{ o] Stex ’

0°°, otherwise

where |w]| is the length of the string w and x|, is the prefix of = of length |w].
That is, ¢ (z) is equal to the constant sequence of ones if x|, comes before or
is equal to w in the lexicographic order of strings, and it is equal to the constant
sequence of zeros otherwise. In words, ¢,, checks if a number is less than or equal
to the scalar value of threshold w. (The string w is finite, hence the classifier has
finite precision.) Note that p, o ¢,,(z) = 1 if and only if x|}, comes before w.

Each function ¢,, is continuous as it only needs to look at a finite number of
bits of the input to decide the output. Thus the collection of all of these functions
(including the identity), call it A, is a subset of C(2Y). When composing ¢,, and
ow, the output of the inner function is 0°° or 1°°, so composition is well-defined.
Moreover, the generated semigroup I' (closing A under compositions) consists of
only continuous functions as well. In contrast with Newton’s method, the algebraic
structure of A is quite simple: composing two classifiers results in something very
similar to a Boolean logic gate. The topological structure is far more interesting.
Intuitively, the crucial difference between Newton’s method and threshold classifiers
is that the complexity of the former comes from depth: the semigroup is generated
by a single map but its iterates are highly complex. The complexity of threshold
classification comes from width: the semigroup has infinitely many generators, but
their compositions are simple.

Before we discuss the deep computations of this CCS, let us describe its type-
shards and the Extendibility Axiom. For any sizer ro with re > 1, the shard L[r]
is all of L. It is worth pointing out that if we identify L with [0, 1] equipped with
the Euclidean topology, these maps are no longer continuous, and the axiom fails.
In the product topology of L = 2N, the set of sequences starting with a specific
prefix is clopen (closed and open), making threshold classifiers locally constant,
and hence continuous. The free extension ¢, of ¢y, is simply ¢., itself. Therefore,
the Extendibility Axiom is satisfied.

Intuitively, the closure of A consists of the set of all possible threshold classifiers
on the real line, but there are two sorts: the ones that classify strict inequalities
and those that classify <. The members of A are finite-precision approximations
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of classifiers that check all bits of information. But here it gets interesting: what is
the difference, in terms of floating-point arithmetic, between x < 0.5 and = < 0.57

Suppose that f;F represents the < classifier for a target a € L. We identify
the scalar truth values with constant sequences, for formally ff : L — {0% 1%}
is defined by ff(z) = 1 if and only if z <jex a. We argue that the pointwise
limit of the threshold classifiers on w,, := al;,"1 (that is, the sequence obtained from
appending a 1 to the first n bits of a) is precisely f,. Specifically, for every x € L, we
intend to prove that lim,—co ¢u, () = fif (). Assume that 2 >1ex a, as the other
case is immediate as both sides of the equality is the constant sequence of ones. Let
m be the least index at which the two sequences differ. Then a(m) =0 < 1 = z(m),
and for all n > m, w, agrees with a up to n. Crucially, w,(m) =0 < 1 = z(m),
which implies that wy, <jex Z|n+1, and hence ¢y, (z) = 0.

Now let f, be the strict inquality classifier. If a is the constant zero, then f, is
the constant 0°° and we can approximate it by the preceding methods. Suppose that
a is not constantly zero; then we have two cases. If a is eventually zero (a is often
called a dyadic rational), that is a = u~170% (here ~ denotes concatenation) for
some finite w. Then w, := v~ 071" <jex a converges to a from below as n — co.
Now suppose that a is not eventually zero. Enumerate the indices of all positive
bits in a, {n € N : a(n) = 1}, strictly increasingly as {nj : k € N} (this is possible
as the former set is infinite by assumption). Let wy := (aln, 1) 7”07 1%; that is, wy,
is the result of flipping the k-th positive bit in @ and then padding with ones. Once
again, observe that wy <jex a. The crucial step follows from the fact that for any
T <iex @, there is a large enough k such that = <jex wg.

The arguments above show that A contains all functions of the form f; and f .
Indeed, A is the Split Cantor space (see Examples 3.3(3)).

3. CLASSIFYING DEEP COMPUTATIONS

3.1. NIP, Rosenthal compacta, and deep computations. Under what condi-
tions are deep computations Baire class 1, and thus well-behaved according to our
framework, on type-shards? The following theorem says that, under the assump-
tion that P is countable, the space of deep computations is a Rosenthal compactum
(when restricted to shards) if and only if the set of computations satisfies the NIP
feature by feature. Hence, we can import the theory of Rosenthal compacta into
this framework of deep computations.

Theorem 3.1. Let (L,P,T) be a compositional computational structure (Defini-
tion 2.3) satisfying the Extendibility Aziom (Definition 2.5) with P countable. Let
R be an exhaustive collection of sizers. Let A C T' be R-confined. The following
are equivalent.

(i) A\L[r_] C B1(Lre], L[re]) for all re € R.
(ii) 7p o Alryy,) satisfies the NIP for all P € P and re € R; that is, for all P € P,
re € R, a < b, {Yn}nen C A there are finite disjoint E, F C N such that

Lire] N ﬂ (mp 0 Yn) (—00,a] N ﬂ (mp 0 vn) "t [b,00) = 0.
nek nekl

Moreover, if any (hence all) of the preceding conditions hold, then every deep
computation f € A can be extended to a Baire-1 function on shards, i.e., there is
[ Lsn — Lo such that flci,) € Bi(L[re], L[re]) for all re € R. In particular, on
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each shard every deep computation is the pointwise limit of a countable sequence of
computations.

Proof. Since P is countable, L[r,] C R” is Polish. Also, the Extendibility Axiom
implies that 7mp o A| £[re] 18 a pointwise bounded set of continuous functions for all
P € P. Hence, Theorem 1.11 and Lemma 1.12 prove the equivalence of (i) and (ii).
If (i) holds and f € A, then write f = Ulim;7; as an ultralimit. Define f = UWim,5;.
Hence, for all r, € R we have f|£[r.] € A|L[T..] C Bi(L[re],L[re]). That every
deep computation is a pointwise limit of a countable sequence of computations
follows from the fact that for a Polish space X every compact subset of By (X) is

Fréchet-Urysohn (that is, a space where topological closures coincide with sequential
closures, see Theorem 3F in [BFT78] or Theorem 4.1 in [Deb13]). O

3.2. The Todorcevi¢ trichotomy and levels of PAC learnability. Given a
countable set A of computations satisfying the NIP on features and shards (con-

dition (ii) of Theorem 3.1) we have that A cr.] (for a fixed sizer 7o) is a separa-
ble Rosenthal compactum (see Definition 1.9). Todorcevié proved a remarkable
trichotomy for Rosenthal compacta [Tod99], and later Argyros, Dodos, Kanel-
lopoulos [ADKO8] proved an heptachotomy that refined Todorcevié’s classifica-
tion. In this section, inspired by the work of Glasner and Megrelishvili [GM22],
we study ways in which this classification allows us to obtain different levels of
PAC-learnability and NIP.

Recall that a topological space X is hereditarily separable if every subspace is
separable, and that X is first countable if every point in X has a countable lo-
cal basis. Every separable metrizable space is hereditarily separable, and R. Pol
proved that every hereditarily separable Rosenthal compactum is first countable
(see section 10 of [Deb13]). This suggests the following definition:

Definition 3.2. Let (L, P,T) be a CCS satisfying the Extendibility Axiom and R
be an exhaustive collection of sizers. Let A C IT'" be an R-confined countable set of
computations satisfying the NIP on shards and features (condition (ii) in Theorem
3.1). We say that A is:

(i) NIPy if A|£[r.] is first countable for every ro € R.

(ii) NIP, if A| £[re] 18 hereditarily separable for every ro € R.

(iii) NIPj if A £[r.] 18 metrizable for every ro € R.

Observe that NIP3 =NIPy =NIP; =NIP. A natural question that would con-
tinue this work is to find examples of CCS that separate these levels of NIP. In
[Tod99], Todorcevié isolates three canonical examples of Rosenthal compacta that
witness the failure of the converse implications above.

We now present some separable and non-separable examples of Rosenthal com-
pacta. These show that the previously discussed classes NIP; are not equal.

Examples 3.3.

(1) Alexandroff compactification of a discrete space of size continuum. For
each a € 2% consider the map 4, : 2% — R given by §,(z) = 1 if z = a and
Sa(r) = 0 otherwise. Let A(2Y) = {§, : a € 2V} U {0}, where 0 is the zero
map. Notice that A(2V) is a compact subset of B;(2V), in fact {4, : a € 2V}
is a discrete subspace of By (2"V) and its pointwise closure is precisely A(2Y).
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Hence, this is a Rosenthal compactum which is not first countable. Notice
that this space is also not separable.

Extended Alexandroff compactification. For each finite binary sequence s €
2<N let vy : 2Y — R be given by v,(z) = 1 if x extends s and vs(z) = 0
otherwise. Let A(2Y) be the pointwise closure of {v, : s € 2<N}, ie.,
A@2Y) = A@Y) U {vs : s € 2<N}. Note that this space is a separable
Rosenthal compactum which is not first countable.

Split Cantor. Let < be the lexicographic order in the space of infinite
binary sequences, i.e., 2V. For each a € 2V let f, : 2 — R be given by
fo(x)=1if x < aand f; (z) = 0 otherwise. Let f; : 2% — R be given by
fH(@)=1if x <aand f;}(z) = 0 otherwise. The split Cantor is the space
SNy = {f 7 ra e 2N} U {f} : a € 2}, which was obtained as the closure
of the space discussed in Section 2.4, giving an example separating NIPo
from NIP3. This is a separable Rosenthal compactum. One example of a
countable dense subset is the set of all f; and f, where a is an infinite
binary sequence that is eventually constant. Moreover, it is hereditarily
separable, but it is not metrizable.

Alexandroff Duplicate. Let K be any compact metric space and consider
the Polish space X = C(K) U K, i.e., the disjoint union of C(K) (with its
supremum norm topology) and K. For each a € K define ¢%,¢1 : X — R

as follows:
oy ) #(a), zeC(K)
9a(@) = { 0, zekK
1,5 | z(a), zeC(K)
9a(w) = { do(x), 2x2€K
Let D(K) = {¢% : a € K} U{g} : a € K}. Notice that D(K) is a first
countable Rosenthal compactum. It is not separable if K is uncountable.
The interesting case will be when K = 2N,
Extended Alexandroff Duplicate of the split Cantor. For each finite binary
sequence t € 2<N let a; € 2V be the sequence starting with ¢ and ending

with 0’s and let b; € 2N be the sequence starting with ¢ and ending with
1I’s. Define h; : 28 — R by

0, T < ag
hi(z) =4 1/2, a <z <b
1, by <z

Let D(S(2Y)) be the pointwise closure of the set {h; : t € 2<N}. Hence,
D(S(2Y)) is a separable first countable Rosenthal compactum which is not

hereditarily separable. In fact, it contains an uncountable discrete subspace
(see Theorem 5 in [Tod99]).

Theorem 3.4 (Todoréevié’s Trichotomy, [Tod99], Theorem 3 in [ADKO08]). Let K
be a separable Rosenthal Compactum.

(i) If K is hereditarily separable but non-metrizable, then S(2V) embeds into K.

(ii) If K is first countable but not hereditarily separable, then either D(2Y) or
D(S(2Y)) embeds into K.
(iii) If K is not first countable, then A(2Y) embeds into K.

We thus have the following classification:
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K is separable Rosenthal compactum

N

K is metrizable K is not metrizable

T

K is hereditarily separable K is not hereditarily separable

(copy of S(I))
/ .

K is first countabl K is not first countable
(copy of D(2") or D(S ( )))  (copy of A(2Y))

The following examples show that the levels NIP; (i = 1,2,3) may be distin-
guished by the topological complexity of deep computations.

Examples 3.5.

(1)

Let (L,P,T') be the computation of square root (example 2.6(1)) with
A =T. We saw that A = AU {f} C By(£,£). This corresponds to the
Alexandroff compactification of a countable discrete set, which is metriz-
able. Hence, A is NIP3 but it is not stable, in the sense that A  C(£, £).
Let (L, P,T) be the finite precision threshold classifiers (Section 2.4) with
A = I'. We saw that A is homeomorphic to the Split Cantor space

S(2V) (Example 3.3(3)), which is hereditarily separable but not metrizable.
Hence, A is NIP, but not NIPj.

The definitions provided here for NIP; (i = 1,2,3) are topological. This raises
the following question:

Question 3.6. Is there a non-topological characterization for NIP;, i = 1,2, 37

3.3. The Argyros-Dodos-Kanellopoulos heptachotomy, and approxima-
bility of deep computation by minimal classes. In the three separable cases
given in 3.3, namely, A(2V), S(2V) and D(S(2V)), the countable dense subsets are
indexed by the binary tree 2<N. This choice of index is useful for two reasons:

(1)

Our emphasis is computational. Elements of 2<V represent finite bitstrings,
i.e., standard computations, while Rosenthal compacta represent deep com-
putations, i.e., limits of finite computations. Mathematically, deep compu-
tations are pointwise limits of standard computations. However, computa-
tionally, we are interested in the manner (and the efficiency) in which the
approximations can occur.

Infinite branches of the binary tree 2<N correspond to the Cantor space 2V,
the canonical perfect set (in the sense that any Polish space with no iso-
lated points contains a copy of 2%). The use of infinite dimensional Ramsey
theory for trees (pioneered by the work of James D. Halpern, Hans Lauchli
in [HL66] and also Keith Milliken in [Mil81], and Alain Louveau, Saharon
Shelah, Boban Velickovic in [LSV93]) and perfect sets (Fred Galvin and An-
dreas Blass in [Bla81], Arnold W. Miller in [Mil89], and Stevo Todor¢evié in
[Tod99]) allowed S.A. Argyros, P. Dodos and V. Kanellopoulos in [ADKOS§]
to obtain an improved version of Theorem 3.4. It is no surprise that Ram-
sey Theory becomes relevant in the study of Rosenthal compacta as it was a
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key ingredient in Rosenthal’s /1 Theorem. For this reason, the main results
in [ADKO8] (which we cite in this paper) are better explained by indexing
Rosenthal compacta with the binary tree.

Definition 3.7. Let X be a Polish space.

(1) If I is a countable and {f; : i € I} C RX, {g; : i € I} C R¥ are two
pointwise families by I, we say that {f; : ¢ € I} and {g; : i € I} are
equivalent if and only if the map f; — g; is extended to a homeomorphism
from {f;:i €I} to{g;:i €I}

(2) If {f; : t € 2<N} is a pointwise bounded family, we say that {f; : t € 2<I}
is minimal if and only if for every dyadic subtree {s; : t € 2<N} of 2<N/
{fs, : t € 2<N} is equivalent to {f; : t € 2<N}.

One of the main results in [ADKO8] is that, up to equivalence, there are seven
minimal families of Rosenthal compacta and that for every relatively compact {f; :
t € 2<N} C By(X) there is a dyadic subtree {s; : t € 2<N} such that {f;, : t € 2<N}
is equivalent to one of the minimal families. We shall describe the seven minimal
families next. We follow the same notation as in [ADKOS8]. For any node ¢ € 2<N,
let us denote by ¢~0% (t71°°) the infinite binary sequence starting with ¢ and
continuing will all 0’s (respectively, all 1’s). Fix a regular dyadic subtree R = {s; :
t € 2<N} of 2<N (i.e., a dyadic subtree such that every level of R is contained
in a level of 2<V) with the property that for all s,s’ € R, s70%° # s/~0% and
571 #£ /1%, Given t € 2<N, let vy be the characteristic function of the set
{x € 2V : z extends t}. Let < be the lexicographic order in 2~. Given a € 2N,
let £+ : 28 — {0,1} be the characteristic function of {z € 2 : @ < x} and let
f:2Y — {0,1} be the characteristic function of {z € 2% : a < z}. Given two
maps f,g : 2% — R we denote by (f,g) : 2N U 2N — R the function which is f on
the first copy of 2V and ¢ on the second copy of 2N.

(1) Dy = {ﬁvt :t € 2<NY. This is discrete in D; = A(2Y).

Dy = {570 : t € 2<N}. This is discrete in Dy = 25V,

D; = {f;;ooo :t € 2<N}. This is a discrete in D3 = S(2V).
Dy={f-1~:t€ 2<N}. This is discrete in Dy = S(2V).

Ds = {uv; : t € 2<N}. This is discrete in D5 = A(2V).

Dg = {(vs,,s7°0%) : t € 2<N}. This is discrete in Dg = D(2V).
D, = {(vst,x:;ﬁox) .t € 2<N}. This is discrete in Dy = D(S(2V))

N N N N~
~N O Ut =~ W N
— D —

Theorem 3.8 (Heptachotomy of minimal families, Theorem 2 in [ADKO8]). Let
X be Polish. For every relatively compact {f; : t € 2<N} C By (X), there exists
i=1,2,...,7 and a reqular dyadic subtree {s; : t € 2<N} of 2<N such that {fs, :
t € 2<NY is equivalent to D;. Moreover, all D; are minimal and mutually non-
equivalent.

4. MEASURE-THEORETIC VERSIONS OF NIP AND UNIVERSAL MONTE CARLO
COMPUTABILITY OF DEEP COMPUTATIONS

The countability assumption on P played a crucial role in the proof of Theorem
1.11 , as it makes R” a Polish space. In this section, we do not assume that P is
countable. We replace deterministic computability by measure-theoretic (‘Monte
Carlo’) computability.
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4.1. A measure-theoretic version of NIP. The raison d’étre of the Baire class-
1 functions is to work with a small class that contains the continuous functions and
their pointwise limits, and that for perfectly normal X, a function f is in By (X,Y)
if and only if f~1[U] is an F, subset of X for every open U C Y (see Fact 1.2).
This motivates the following definition:

Definition 4.1. Given a Hausdorff space X and a measurable space (Y,X), we
say that f : X — Y is universally measurable (with respect to X) if f~1(E) is
p-measurable for every Radon measure! 4 on X and every E € ¥. When ¥ = R
we will always take ¥ = B(R), the Borel o-algebra of R.

Remark 4.2. A function f : X — R is universally measurable if and only if f~(U)
is p-measurable for every Radon probability measure g on X and every open set
UCR.

Intuitively, a function is universally measurable if it is “measurable no matter
which reasonable way you try to measure things on its domain”. The concept of
universal measurability emerged from work of Kallianpur and Sazonov, in the late
1950’s and 1960s — with later developments by Blackwell, Darst and others —
building on earlier ideas of Gnedenko and Kolmogorov from the 1950s. See [Pap02,
Chapters 1 and 2].

Notation 4.3. Following [BFT78], the collection of all universally measurable real-
valued functions on X will be denoted by M, (X). Given a fixed Radon measure p
on X, the collection of all y-measurable real-valued functions on X will be denoted
by #°(X, ).

In the context of deep computations, we are interested in transition maps of a
state space L C R” into itself. There are two natural o-algebras one can consider
in the product space R”: the Borel o-algebra, i.e., the o-algebra generated by open
sets in R”, and the cylinder o-algebra (i.e., the o-algebra generated by the sub-
basic open sets in R, that is, the set Wi_l(U) with U C R open). Note that when
P is countable, both o-algebras coincide, but in general the cylinder o-algebra is
strictly smaller. We will use the cylinder o-algebra to define universally measurable
maps f : R? — R?. The reason for this choice is the following characterization:

Proposition 4.4. Let X be a Hausdorff space and Y = [[,.; Y: be any product of
measurable spaces (Y;,%;) for i € I. Let Sy be the cylinder o-algebra generated by
the measurable spaces (Y;,¥;). Let f: X — Y. The following are equivalent:

(i) f:X =Y is universally measurable (with respect to Ly ).
(i) mio f: X —Y; is universally measurable (with respect to ¥;) for alli € 1.

Proof. (i)=-(ii) is clear since the projection maps m; are measurable and the com-
position of measurable functions is measurable. To prove (ii)=-(i), suppose that
C = [],c; Cs is a measurable cylinder and let J be the finite subset of I such that
Ci #Y; for i € J. Then, C = ;c;m; '(Ci), so f~1(C) = ey (mi0 f)7HCy) is a
universally measurable set by assumption. O

The preceding proposition says that a transition map is universally measurable
if and only if it is universally measurable on all its features; in other words, we can

IThe definition of Radon measure can be found in any standard measure theory textbook; see,
for example, 411H in [Fre03].
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check measurability of a transition just by checking measurability feature by feature.
This is the same as in the Baire class-1 case (compare with Proposition 1.10). We
will denote by M, (X,R%) the collection of all universally measurable functions
f: X — R? (with respect to the cylinder o-algebra), endowed with the topology
of pointwise convergence.

In this paper we are interested in identifying PAC-learnability phenomena in
real-valued deep computations (i.e., the NIP). The main result in section 3 is that
PAC-learning (or NIP) corresponds to relative compactness in the space of Baire
class-1 functions, whenever we work with countably many features. The following
measure-theoretic characterization of the NIP will lead us to find other connections
between the topology of function spaces and a notion of Monte Carlo computability
(see next section):

Theorem 4.5 (Bourgain-Fremlin-Talagrand, Theorem 2F in [BFT78]). Let X be a
Hausdorff space and A C C(X) be pointwise bounded. The following are equivalent:
(i) AC M, (X).
(i) For every compact K C X, A|k satisfies the NIP.
(iii) For every Radon measure i on X, A is relatively countably compact in #°(X, 1),
i.e., every countable subset of A has an accumulation point in #°(X, p).

4.2. Universal Monte Carlo computability of deep computations. We now
formalize the concept of a deep computation being computable except on a set
of arbitrarily small measure “no matter which reasonable way you try to measure
things on its domain” (see the remarks following definition 4.1). This is the concept
of universal Monte Carlo computability defined below (Definition 4.6). To motivate
the definition, let us first recall two facts:

(1) Littlewoood’s second principle states that every Lebesgue measurable func-
tion is “nearly continuous”. The formal statement of this, which is Luzin’s
theorem, is that if (X,%, u) a Radon measure space and Y is a second-
countable topological space (e.g., Y = R” with P countable ) equipped
with a Borel algebra, then any given f : X — Y is measurable if and only
if for every E € ¥ and every € > 0 there exists a closed F' C E such that
the restriction f|p is continuous and u(E\F) < €.

(2) Computability of deep computations is characterized in terms of continuous
extendibility of computations. This is at the core of [ADIW24].

These two facts motivate the following definition:

Definition 4.6. Let (L,P,T') be a CCS. We say that a transition f : L — L
is universally Monte Carlo computable if and only if there exists f : Lgn — Len
extending f such that for every sizer 7, there is a sizer s, such that the restriction
f|L[T.] : L[re] — L]Se] is universally measurable, i.e., WpOflL[T.] : L[re] = [—sp, sp]
is p-measurable for every Radon probability measure p on L[re] and P € P.

Remark 4.7. Recall that every Radon measure on a compact space (e.g., Lgpn) is
finite and, by proper normalization, can be treated as a probability measure. For
this reason, we shall use the term “Radon probability measure” instead of “Radon
measure” in definition 4.6.

4.3. Bourgain-Fremlin-Talagrand, NIP, and universal Monte Carlo com-
putability of deep computations. The result in this subsection is a consequence
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of Theorem 4.5, and it states that PAC-learning (or NIP) implies Monte Carlo com-
putability with respect to any measure.

Theorem 4.8. Let (L,P,T) be a CCS satisfying the Extendibility Aziom. Let R
be an exhaustive collection of sizers. Let A C T' be R-confined. If mp o Al
satisfies the NIP for all P € P and all re € R, then every deep computation in A
is universally Monte Carlo computable.

Proof. Fix P € P and r, € R. By the Extendibility Axiom, 7p o A|L[T.] is a
set of pointwise bounded continuous functions on the compact set L[r,]. Since
7p o Al = 7Tp 0 Algr,] has the NIP then so does mp o Alg,,) by lemma 1.12.

By Theorem 4.5, we have 7p o A|g(..] € M, (£L[re]) for all r € R and P € P. Let
f € A be a deep computation. Write f = Ulim; ; as an ultralimit of computations
in A. Define f := Ulim; ;. Then, f : Len — Lgn extends f. Since A is R-confined
we have that f : Lre] — L[re] and f : £[r,] — £[r,] for all 7o € R. Lastly, note that

for all 7 € R and P € P we have that 7p o f~|5[m] €mpo A|L[r.] C M.(L[re]). O

Question 4.9. Under the same assumptions of the preceding theorem, suppose
that every deep computation of A is universally Monte Carlo computable. Must
Tp o A|L[,..] have the NIP for all P € P and all ro € R?

4.4. Talagrand stability, NIP, and universal Monte Carlo computability
of deep computations. There is another notion closely related to NIP, introduced
by Talagrand in [Tal84] while studying Pettis integration. Suppose that X is a
compact Hausdorff space and A € RX. Let x be a Radon probability measure on
X. Given a p-measurable set £ C X, a positive integer k and real numbers a < b.
we write:

Dk(A7E,CL,b) = U {l‘ c EQk : f(aigl) <a, f($2i+1) >b forall i< k}
feA

We say that A is Talagrand p-stable if and only if for every p-measurable set
FE C X of positive measure and for every a < b there is k > 1 such that

(1) (Di(A, B, a,b) < (n(E))*",

where p* denotes the outer measure (we work with outer since the sets Dy (A, E, a, b)
need not be p-measurable). This is certainly the case when A is a countable set of
continuous (or p-measurable) functions.

We shall now establish that Talagrand p-stability is a way to ensure that ac-
cumulation points (deep computations) are py-measurable. First, we mention the
following useful characterization of measurable functions (compare with Fact 1.2):

Fact 4.10 (Lemma 413G in [Fre03]). Suppose that (X,3, ) is a measure space
and X C X is a collection of measurable sets satisfying the following conditions:

(1) (X,Z, 1) is complete, i.e., for all E € ¥ with p(E) =0 and F' C E we have
FeX.

(2) (X,%, 1) is semi-finite, i.e., for all E € X with u(FE) = oo there exists
F CFE such that F € ¥ and 0 < u(F) < 0.

(8) (X,%, 1) is saturated, i.e., E € X if and only if ENF € X for all F € &
with u(F) < oo.
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(4) (X, X, 1) is inner reqular with respect to X, i.e., for all E € &
w(E) =sup{u(K): K € X and K C E}

(In particular, if X is Hausdorff, u is a Radon measure on X and X is the collection
of compact subsets of X, all these conditions hold). Then, f : X — R is measurable
if and only if for every K € K with 0 < u(K) < oo and a < b, either u*(P) < u(K)
or *(Q) < u(K) where P={x € K : f(z) <a} and Q ={z € K : f(z) > b}.

Lemma 4.11. If A is Talagrand p-stable, then A is also Talagrand p-stable and
AC (X, p).

Proof. First, we claim that a subset of a u-stable set is p-stable. To see this,
suppose that A C B and B is p-stable. Fix any p-measurable E C X of positive
measure and a < b. Let k > 1 such that

(1*)*(Di(B, B, a,b)) < (u(E))*"
Since A C B, then Dy (A4, E,a,b) C Dy(B, E,a,b) so
()" (Dr(A, B,a,b)) < (1) (Di(B, B, a,b)) < (u(E))*

We now show that A is u-stable. Fix E C X measurable with positive measure
and a < b. Let o/ < b be such that a < a’ < b < b. Since A is p-stable, let & > 1
be such that
(42%)"(Dy(A, B, ', 1) < (u(E)*

If x € Di(A, E,a,b), then there is f € A such that f(x;) <a < a' and f(xgi11) >
b > U for all i < k. By definition of pointwise convergence topology, there exists g €
A such that g(x2;) < o’ and g(zg;+1) > b for all i < k. Hence, x € Di(A, E,d, V).
We have shown that Dy (A, E,a,b) C Di(A, E,a’,b') so

()" (Dr(4, B,a,b)) < (1) (Di(A, E,d' b)) < (u(E))*

It suffices to show that A C .#°(X, ). Suppose that there exists f € A such that
f ¢ .#°(X,p). By fact 4.10, there exists a y-measurable set E of positive measure
and a < b such that p*(P) = p*(Q) = w(E) where P = {z € E : f(z) < a}
and Q = {x € E : f(z) > b}. Then, for any k > 1: (P x Q)* C Dyx({f}, E,a,b)
so () (Dy({f} Brard)) = (u* (Pyu*(@)F = (u(E). Thus, {f} is not p-
stable, but we argued before that a subset of a u-stable set must be p-stable.
Contradiction. O

Just like the NIP, Talagrand pu-stability is directly related to relative compactness
in the space .#°(X, ). This is the content of the preceeding lemma.

Definition 4.12. We say that A is universally Talagrand stable if A is Talagrand
p-stable for every Radon probability measure p on X.

We first observe that universal Talagrand stability corresponds to a complexity
class smaller than or equal to the NIP:

Proposition 4.13. Let X be a compact Hausdorff space and A C C(X) be point-
wise bounded. If A is universally Talagrand stable, then A satisfies the NIP.

Proof. By Theorem 4.5, it suffices to show that A is relatively countably compact
in .#°(X,u) for all Radon probability measure p on X. Since A is Talagrand pu-
stable for any such p, we have A C .Z°(X,u) by lemma 4.11. In particular, A is
relatively countably compact in .#Z°(X, p). O
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In the computational context we get the following:

Corollary 4.14. Let (L,P,T) be a CCS satisfying the Extendibility Axziom. If
mp o Alpp,) s universally Talagrand stable for all P € P and all sizers ro, then
every deep computation is universally Monte Carlo computable.

Proof. This is a consequence of proposition 4.13 and Theorem 4.8. (Il

In the measure-theoretic side, we have identified two notions of PAC-learnability:
Talagrand stability with respect to any measure and the measure-theoretic version
of NIP. A natural question is whether these two classes are equivalent. Even in
the simple case of countably many computations, this question is sensitive to the
set-theoretic axioms. On one hand, it is consistent (with respect to the standard
ZFC axioms of set theory) that these two classes are the same:

Theorem 4.15 (Talagrand, Theorem 9-3-1(a) in [Tal84]). Let X be a compact
Hausdorff space and A C M,.(X) be countable and pointwise bounded. Assume that
[0, 1] is not the union of < ¢ closed measure zero sets. If A satisfies the NIP, then
A is universally Talagrand stable.

The assumption that [0,1] is not the union of < ¢ closed measure zero sets is
a consequence of, for example, the Continuum Hypothesis. On the other hand,
by fixing a particular well-known measure: the Lebesgue measure, we see that the
other case is also consistent:

Theorem 4.16 (Fremlin, Shelah, [FS93]). It is consistent with the usual axioms of
set theory that there exists a countable pointwise bounded set of Lebesque measur-
able functions with the NIP which is not Talagrand stable with respect to Lebesgue
measure.

Notice that in the framework presented in this paper, we are interested in con-
tinuous computations and their limits. The previous two results apply to sets of
measurable functions, a class of functions larger than the class of continuous func-
tions. It is possible that the continuity assumption, i.e., the Extendibility Axiom,
settles the problem. This is a problem that remains open for future work.
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