
DEEP COMPUTATIONS AND NIP1
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Abstract. This paper revisits and extends a bridge between functional anal-
ysis and model theory, emphasizing its relevance to the theoretical foundations

of machine learning. We show that the compactness behavior of families of
Baire class 1 functions mirrors the learnability conditions in the sense of Proba-

bly Approximately Correct (PAC) learning, and that the failure of compactness

corresponds to the presence of infinite Vapnik-Chervonenkis (VC) dimension.
From this perspective, Rosenthal compacta emerge as the natural topological

counterpart of PAC-learnable concept classes, while NIP vs. IP structures

capture the precise boundary between analytical regularity and combinatorial
intractability. These parallels suggest a unified framework linking compact-

ness, definability, and learnability, exemplifying how the topology of function

spaces encodes the algorithmic and epistemic limits of prediction.

1. Introduction6

Suppose that A is a subset of the real line R and that A is its closure. It is a7

well-known fact that any point of closure of A, say x ∈ A, can be approximated8

by points inside of A, in the sense that a sequence {xn}n∈N ⊆ A must exist with9

the property that limn→∞ xn = x. For most applications we wish to approximate10

objects more complicated than points, such as functions.11

Suppose we wish to build a neural network that decides, given an 8 by 8 black-12

and-white image of a hand-written scribble, what single decimal digit the scrib-13

ble represents. Maybe there exists f, a function representing an optimal solution14

to this classifier. Thus if X is the set of all (possible) images, then for I ∈ X,15

f(I) ∈ {0, 1, 2, . . . , 9} is the “best” (or “good enough” for whatever deployment is16

needed) possible guess. Training the neural network involves approximating f until17

its guesses are within an acceptable error range. In general, f might be a function18

defined on a more complicated topological space X.19

Often computers’ viable operations are restricted (addition, subtraction, multi-20

plication, division, etc.) and so we want to approximate a complicated function21

using simple functions (like polynomials). The problem is that, in contrast with22

mere points, functions in the closure of a set of functions need not be approximable23

(meaning the pointwise limit of a sequence of functions) by functions in the set.24

Functions that are the pointwise limit of continuous functions are Baire class 125

functions, and the set of all of these is denoted by B1(X). Notice that these are26

not necessarily continuous themselves! A set of Baire class 1 functions, A, will be27

relatively compact if its closure consists of just Baire class 1 functions (we delay the28

formal definition of relatively compact until Section 2, but the fact mentioned here29

is sufficient). The Bourgain-Fremlin-Talagrand (BFT) theorem reveals a precise30

correspondence between relative compactness in B1(X) and the model-theoretic31

1
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notion of Non-Independence Property (NIP). This was realized by Pierre Simon in32

[Sim15b].33

Simon’s insight was to view definable families of functions as sets of real-valued34

functions on type spaces and to interpret relative compactness in B1(X) as a form35

of “tame behavior” under ultrafilter limits. From this perspective, NIP theories are36

those whose definable families behave like relatively compact sets of Baire class 137

functions, avoiding the wild, βN-like configurations that witness instability. This38

observation opened a new bridge between analysis and logic: topological compact-39

ness corresponds to the absence of combinatorial independence. Simon’s later de-40

velopments connected these ideas to Keisler measures and empirical averages, al-41

lowing tools from functional analysis to be used to study learnability and definable42

types. This reinterpretation of model-theoretic tameness through the lens of the43

BFT theorem has made NIP a central notion not only in stability theory but also44

in contemporary connections with learning theory and ergodic analysis.45

Historically, the notion of NIP arises from Shelah’s foundational work on the
classification theory of models. In his seminal book Unstable Theories [She78],
Shelah introduced the independence property as a key dividing line within unstable
structures, identifying the class of stable theories inside those in which this property
fails. Fix a first-order formula φ(x, y) in a language L and a model M of an L-
theory T . We say that φ(x, y) has the independence property (IP) in M if there is
a sequence (ci)i∈N ⊆ M|x| such that for every S ⊆ N there is aS ∈ M|y| with

∀i ∈ N, M |= φ(ci, aS) ⇐⇒ i ∈ S.

The formula ϕ(x, y) has the IP if it does so in some model M, and the formula46

has the non-independence property (NIP) if it does not have the IP. The latter47

notion of NIP generalizes stability by forbidding the full combinatorial indepen-48

dence pattern while allowing certain controlled forms of unstability. Thus, Simon’s49

interpretation of the BFT theorem can be viewed as placing Shelah’s dividing line50

into a topological-analytic framework, connecting the earliest notions of stability51

to compactness phenomena in spaces of Baire class 1 functions.52

One of the most important innovations in Machine Learning is the mathemati-53

cal notion, introduced by Turing Awardee Leslie Valiant in the 1980s, of ‘probably54

approximately correct learning’, or PAC-learning for short [BD19]. We give a stan-55

dard but short overview of these concepts in the context that is relevant to this56

work.57

Consider the following important idea in data classification. Suppose that A is58

a set and that C is a collection of sets. We say that C shatters A if every subset59

of A is of the form C ∩ A for some C ∈ C. For a classical geometric example, if60

A is the set of four points on the Euclidean plane of the form (±1,±1), then the61

collection of all half-planes does not shatter A, the collection of all open balls does62

not shatter A, but the collection of all convex sets shatters A. While A need not be63

finite, it will usually be assumed to be so in Machine Learning applications. A finer64

way to distinguish collections of sets that shatter a given set from those that do65

not is by the Vapnik-Chervonenkis dimension (VC-dimension), which is equal to66

the cardinality of the largest finite set shattered by the collection, in case it exists,67

or to infinity otherwise.68

A concrete illustration of these ideas appears when considering threshold clas-69

sifiers on the real line. Let H be the collection of all indicator functions ht given70
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by ht(x) = 1 if x ≤ t and ht(x) = 0 otherwise. Each ht is a Baire class 1 func-71

tion, and the family H is relatively compact in B1(R). In model-theoretic terms,72

H is NIP, since no configuration of points and thresholds can realize the full inde-73

pendence pattern of a binary matrix. By contrast, the family of parity functions74

{x 7→ (−1)⟨w,x⟩ : w ∈ {0, 1}n} on {0, 1}n (here ⟨w, x⟩ is the usual vector dot product)75

has the independence property and fails relative compactness in B1(X), capturing76

the analytical meaning of instability. This dichotomy mirrors the behavior of con-77

cept classes with finite versus infinite VC dimension in statistical learning theory.78

Going back to the model theoretic framework, let

Fφ(M) := {φ(M,a) : a ∈ M|y|}

be the family of subsets of M|x| defined by instances of the formula φ, where79

φ(M,a) is the set of |x|-tuples c in M for which M |= φ(c, a). The fundamental80

theorem of statistical learning states that a binary hypothesis class is PAC-learnable81

if and only if it has finite VC-dimension, and the subsequent theorem connects the82

rest of the concepts presented in this section.83

Theorem 1.1 (Laskowski). The formula φ(x, y) has the NIP if and only if Fφ(M)84

has finite VC-dimension.85

For two simple examples of formulas satisfying the NIP, consider first the lan-86

guage L = {<} and the model M = (R, <) of the reals with their usual linear order.87

Take the formula φ(x, y) to mean x < y, then φ(M,a) = (−∞, a), and so Fφ(M)88

is just the set of left open rays. The VC-dimension of this collection is 1, since it89

can shatter a single point, but no two point set can be shattered since the rays are90

downwards closed. Now in contrast, the collection of open intervals, given by the91

formula φ(x;y1, y2) := (y1 < x)∧ (x < y2), has VC-dimension 2.92

In this work, we study the corresponding notions of NIP (and hence PAC-93

learnability) in the context of Compositional Computation Structures introduced94

in [ADIW24].95

2. General topological preliminaries96

In this section we give preliminaries from general topology and function space97

theory. We include some of the proofs for completeness but a reader familiar with98

these topics may skip them.99

A Polish space is a separable and completely metrizable topological space. The100

most important examples are the reals R, the Cantor space 2N (the set of all infinite101

binary sequences, endowed with the product topology), and the Baire space NN (the102

set of all infinite sequences of naturals, also with the product topology). Countable103

products of Polish spaces are Polish; this includes spaces like RN, the space of104

sequences of real numbers. A subspace of a Polish space is itself Polish if and only105

if it is a Gδ-set, that is, it can be written as the intersection of a countable family106

of open subsets; in particular, closed subsets and open subsets of Polish spaces are107

also Polish spaces.108

In this work we talk a lot about subspaces, and so there is a pertinent subtlety109

of the definitions worth mentioning: completely metrizable space is not the same110

as complete metric space; for an illustrative example, notice that (0, 1) is home-111

omorphic to the real line, and thus a Polish space (being Polish is a topological112

property), but with the metric inherited from the reals, as a subspace, (0, 1) is not113

a complete metric space. In summary, a Polish space has its topology generated by114
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some complete metric, but other metrics generating the same topology might not115

be. In practice, such as when studying descriptive set theory, one finds that we can116

often keep the metric implicit.117

Given two topological spaces X and Y we denote by B1(X, Y) the set of all func-118

tions f : X → Y such that for all open U ⊆ Y, f−1[U] is an Fσ subset of X (that119

is, a countable union of closed sets); we call these types of functions Baire class120

1 functions. When Y = R we simply denote this collection by B1(X). We en-121

dow B1(X, Y) with the topology of pointwise convergence (the topology inherited122

from the product topology of YX). By Cp(X, Y) we denote the set of all contin-123

uous functions f : X → Y with the topology of pointwise convergence. Similarly,124

Cp(X) := Cp(X,R). A natural question is, how do topological properties of X125

translate to Cp(X) and vice versa? These questions, and in general the study of126

these spaces, are the concern of Cp-theory, an active field of research in general127

topology which was pioneered by A. V. Arhangel’skĭı and his students in the 1970’s128

and 1980’s. This field has found many exciting applications in model theory and129

functional analysis. Good recent surveys on the topics include [HT23] and [Tka11].130

We begin with the following:131

Fact 2.1. If all open subsets of X are Fσ (in particular if X is metrizable), then132

Cp(X, Y) ⊆ B1(X, Y).133

The proof of the following fact (due to Baire) can be found in Section 10 of134

[Tod97].135

Fact 2.2 (Baire). If X is a complete metric space, then the following are equivalent:136

(i) f is a Baire class 1 function, that is, f ∈ B1(X).137

(ii) f is a pointwise limit of continuous functions.138

(iii) For every closed F ⊆ X, the restriction f|F has a point of continuity.139

Moreover, if X is Polish and f /∈ B1(X), then there exists countable D0, D1 ⊆ X and140

reals a < b such that D0 = D1, D0 ⊆ f−1(−∞, a] and D1 ⊆ f−1[b,∞).141

A subset L ⊆ X is relatively compact in X if the closure of L in X is compact.142

Relatively compact subsets of B1(X) (for X Polish space) have been objects of143

interest to many people working in Analysis and Topological Dynamics. We begin144

with the following well-known result. Recall that a set A ⊆ RX of real-valued145

functions is pointwise bounded if for every x ∈ X there is Mx > 0 such that |f(x)| <146

Mx for all f ∈ A. We include the proof for the reader’s convenience:147

Lemma 2.3. Let X be a Polish space and A ⊆ B1(X) be pointwise bounded. The148

following are equivalent:149

(i) A is relatively compact in B1(X).150

(ii) A is relatively countably compact in B1(X), i.e., every countable subset of151

A has an accumulation point in B1(X).152

(iii) A ⊆ B1(X), where A denotes the closure in RX.153

Proof. By definition, being pointwise bounded means that there is, for each x ∈ X,154

Mx > 0 such that, for every f ∈ A, |f(x)| ≤ Mx.155

(i)⇒(ii) holds in general.156

(ii)⇒(iii) Assume that A is relatively countably compact in B1(X) and that157

f ∈ A \ B1(X). By Fact 2.2, there are countable D0, D1 ⊆ X with D0 = D1, and158

a < b such that D0 ⊆ f−1(−∞, a] and D1 ⊆ f−1[b,∞). We claim that there is a159
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sequence {fn}n∈N ⊆ A such that for all x ∈ D0∪D1, limn→∞ fn(x) = f(x). Indeed,160

use the countability to enumerate D0∪D1 as {xn}n∈N. Then find, for each positive161

n, fn ∈ A with |fn(xi) − f(xi)| <
1
n

for all i ≤ n. The claim follows.162

By relative countable compactness of A, there is an accumulation point g ∈163

B1(X) of {fn}n∈N. It is straightforward to show that since f and g agree on D0∪D1,164

g does not have a point of continuity on the closed set D0 = D1, which contradicts165

Fact 2.2.166

(iii)⇒(i) Suppose that A ⊆ B1(X). Then A ∩ B1(X) = A is a closed subset of167 ∏
x∈X[−Mx,Mx]; Tychonoff’s theorem states that the product of compact spaces168

is always compact, and since closed subsets of compact spaces are compact, A must169

be compact, as desired. □170

2.1. From Rosenthal’s dichotomy to NIP. The fundamental idea that con-171

nects the rich theory here presented to real-valued computations is the concept172

of an approximation. In the reals, points of closure from some subset can always173

be approximated by points inside the set, via a convergent sequence. For more174

complicated spaces, such as Cp(X), this fails in a remarkably intriguing way. Let175

us show an example that is actually the protagonist of a celebrated result. Con-176

sider the Cantor space X = 2N and let pn(x) = x(n) define a continuous mapping177

X → {0, 1}. Then one can show (see Chapter 1.1 of [Tod97] for details) that, per-178

haps surprisingly, the only continuous functions in the closure of {pn}n∈N are the179

functions pn themselves; moreover, none of the subsequences of {pn}n∈N converge.180

In some sense, this example is the worst possible scenario for convergence. The181

topological space obtained from this closure is well-known. Topologists refer to it182

as the Stone-Čech compactification of the discrete space of natural numbers, or βN183

for short, and it is an important object of study in general topology.184

Theorem 2.4 (Rosenthal’s Dichotomy). If X is Polish and {fn} ⊆ Cp(X) is point-185

wise bounded, then either {fn}n∈N contains a convergent subsequence or a subse-186

quence whose closure (in RX) is homeomorphic to βN.187

In other words, a pointwise bounded set of continuous functions will either con-188

tain a subsequence that converges or a subsequence whose closure is essentially189

the same as the example mentioned in the previous paragraphs (the worst possible190

scenario). Note that in the preceding example, the functions are trivially pointwise191

bounded in RX as the functions can only take values 0 and 1.192

If we intend to generalize our results from Cp(X) to the bigger space B1(X), we193

find a similar dichotomy. Either every point of closure of the set of functions will194

be a Baire class 1 function, or there is a sequence inside the set that behaves in the195

worst possible way (which in this context, is the IP!). The theorem is usually not196

phrased as a dichotomy but rather as an equivalence (with the NIP instead):197

Theorem 2.5 (Bourgain-Fremlin-Talagrand, Theorem 4G in [BFT78]). Let X be198

a Polish space and A ⊆ Cp(X) be pointwise bounded. The following are equivalent:199

(i) A is relatively compact in B1(X), i.e., A ⊆ B1(X).200

(ii) For every {fn}n∈N ⊆ A and for every a < b there is I ⊆ N such that⋂
n∈I

f−1
n (−∞, a] ∩

⋂
n/∈I

f−1
n [b,∞) = ∅.

Our goal now is to characterize relatively compact subsets of B1(X, Y) when201

Y = RP with P countable. Given P ∈ P we denote the projection map onto the202
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P-coordinate by πP : RP → R. From a high-level topological interpretation, the203

subsequent lemma states that, in this context, the spaces R and RP are really not204

that different, and that if we understand the Baire class 1 functions of one space,205

then we also understand the functions of both. In fact, R and any other Polish206

space is embeddable as a closed subspace of RP .207

Lemma 2.6. Let X be a Polish space and P be a countable set. Then, f ∈ B1(X,RP)208

if and only if πP ◦ f ∈ B1(X) for all P ∈ P.209

Proof. Only one implication needs a proof. Suppose that πP ◦ f ∈ B1(X) for all
P ∈ P. Let V be a basic open subset of RP . That is, there exists a finite P ′ ⊆ P
such that V =

⋂
P∈P ′ π

−1
P [UP] where UP is open in R. Finally,

f−1[V] =
⋂

P∈P ′

(πP ◦ f)−1[UP]

is an Fσ set. Since P is countable, RP is second countable so every open set U in210

RP is a countable union of basic open sets. Hence, f−1[U] is Fσ. □211

Below we consider P with the discrete topology. For each f : X → RP denote212

f̂(P, x) := πP ◦ f(x) for all (P, x) ∈ P × X. Similarly, for each g : P × X → R denote213

ǧ(x)(P) := g(P, x). Given A ⊆ (RP)X, we denote Â as the set of all f̂ such that214

f ∈ A.215

The map
(
RP)X → RP×X given by f 7→ f̂ is a homeomorphism and its inverse is216

given by g 7→ ǧ.217

Lemma 2.7. Let X be a Polish space and P be countable. Then, f ∈ B1(X,RP) if218

and only if f̂ ∈ B1(P × X).219

Proof. (⇒) Given an open set of reals U, we have that for every P ∈ P, f−1[π−1
P [U]]

is Fσ by Lemma 2.6. Given that P is a discrete countable space, we observe that

f̂−1[U] =
⋃
P∈P

(
{P}× f−1[π−1

P [U]]
)

is also an Fσ set. (⇐) By lemma 2.6 it suffices to show that πP ◦ f ∈ B1(X) for all

P ∈ P. Fix an open U ⊆ R. Write f̂−1[U] =
⋃

n∈N Fn where Fn is closed in P × X.
Then,

(πP ◦ f)−1[U] =
⋃
n∈N

{x ∈ X : (P, x) ∈ Fn}

which is Fσ. □220

We now direct our attention to a notion of the NIP that is more general than221

the one from the introduction. It can be interpreted as a sort of continuous version222

of the one presented in the preceding section.223

Definition 2.8. We say that A ⊆ RX has the Non-Independence Property (NIP)
if and only if for every {fn}n∈N ⊆ A and for every a < b there are finite disjoint
sets E, F ⊆ N such that ⋂

n∈E

f−1
n (−∞, a] ∩

⋂
n∈F

f−1
n [b,∞) = ∅.



DEEP COMPUTATIONS AND NIP 7

Note that if X is compact and A ⊆ Cp(X), then A has the NIP if and only if for
every {fn}n∈N ⊆ A and for every a < b there is I ⊆ N such that⋂

n∈I

f−1
n (−∞, a] ∩

⋂
n/∈I

f−1
n [b,∞) = ∅.

Given A ⊆ YX and K ⊆ X we write A|K := {f|K : f ∈ A}, i.e., the set of224

all restrictions of functions in A to K. The following Theorem is a slightly more225

general version of Theorem 2.5.226

Theorem 2.9. Assume that P is countable, X is a Polish space, and A ⊆ Cp(X,RP)227

is such that πP ◦A is pointwise bounded for all P ∈ P. The following are equivalent228

for every compact K ⊆ X:229

(1) A|K ⊆ B1(K,RP).230

(2) πP ◦A|K has the NIP for every P ∈ P.231

Proof. (1)⇒(2). Let P ∈ P. Fix {fn}n∈N ⊆ A and a < b. By (1) we have that

A|K ⊆ B1(K,RP). Applying the homeomorphism f 7→ f̂ and using lemma 2.7 we

get Â|P×K ⊆ B1(P × K). By Theorem 2.5, there is I ⊆ N such that

(P × K) ∩
⋂
n∈I

f̂n
−1

(−∞, a] ∩
⋂
n/∈I

f̂n
−1

[b,∞) = ∅

Hence,

K ∩
⋂
n∈I

(πP ◦ fn)−1(−∞, a] ∩
⋂
n/∈I

(πP ◦ fn)−1[b,∞) = ∅

By compactness, there are finite E ⊆ I and F ⊆ N\I such that

K ∩
⋂
n∈E

(πP ◦ fn)−1(−∞, a] ∩
⋂
n∈F

(πP ◦ fn)−1[b,∞) = ∅

Thus, πP ◦A|L has the NIP.232

(2)⇒(1) Fix f ∈ A|K. By lemma 2.6 it suffices to show that πP ◦ f ∈ B1(K)233

for all P ∈ P. By (2), πP ◦ A|K has the NIP. Hence, by Theorem 2.5 we have234

πP ◦A|K ⊆ B1(K). But then πP ◦ f ∈ πP ◦A|K ⊆ B1(K). □235

Lastly, a simple but significant result that helps understand the operation of236

restricting a set of functions to a specific subspace of the domain space X, of course237

in the context of the NIP, is that we may always assume that said subspace is238

closed. Concretely, whether we take its closure or not has no effect on the NIP:239

Lemma 2.10. Assume that X is Hausdorff and that A ⊆ Cp(X). The following240

are equivalent for every L ⊆ X:241

(i) AL has the NIP.242

(ii) A|L has the NIP.243

Proof. It suffices to show that (i)⇒(ii). Suppose that (ii) does not hold, i.e., that
there are {fn}n∈N ⊆ A and a < b such that for all finite disjoint E, F ⊆ N:

L ∩
⋂
n∈E

f−1
n (−∞, a] ∩

⋂
n∈F

f−1
n [b,∞) ̸= ∅.

Pick a ′ < b ′ such that a < a ′ < b ′ < b. Then, for any finite disjoint E, F ⊆ N we
can choose

x ∈ L ∩
⋂
n∈E

f−1
n (−∞, a ′) ∩

⋂
n∈F

f−1
n (b ′,∞)
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By definition of closure:

L ∩
⋂
n∈E

f−1
n (−∞, a ′] ∩

⋂
n∈F

f−1
n [b ′,∞) ̸= ∅.

This contradicts (i). □244

3. NIP in the context of Compositional Computation Structures245

In this section, we study what the NIP tell us in the context of deep compu-246

tations as defined in [ADIW24]. We say a structure (L,P, Γ) is a Compositional247

Computation Structure (CCS) if L ⊆ RP is a subspace of RP , with the pointwise248

convergence topology, and Γ ⊆ LL is a semigroup under composition. The motiva-249

tion for CCS comes from (continuous) model theory, where P is a fixed collection250

of predicates and L is a (real-valued) structure. Every point in L is identified with251

its “type”, which is the tuple of all values the point takes on the predicates from252

P, i.e., an element of RP . In this context, elements of P are called features. In the253

discrete model theory framework, one views the space of complete-types as a sort of254

compactification of the structure L. In this context, we don’t want to consider only255

points in L (realized types) but in its closure L (possibly unrealized types). The256

problem is that the closure L is not necessarily compact, an assumption that turns257

out to be very useful in the context of continuous model theory. To bypass this258

problem in a framework for deep computations, Alva, Dueñez, Iovino and Walton259

introduced in [ADIW24] the concept of shards, which essentially consists in cover-260

ing (a large fragment) of the space L by compact, and hence pointwise-bounded,261

subspaces (shards). We shall give the formal definition next.262

A sizer is a tuple r• = (rP)P∈P of positive real numbers indexed by P. Given a263

sizer r•, we define the r•-shard as:264

L[r•] = L ∩
∏
P∈P

[−rP, rP]

For an illustrative example, we can frame Newton’s polynomial root approxima-265

tion method in the context of a CCS (see Example 5.6 of [ADIW24] for details) as266

follows. Begin by considering the extended complex numbers Ĉ := C ∪ {∞} with267

the usual Riemann sphere topology that makes it into a compact space (where268

unbounded sequences converge to ∞). In fact, not only is this space compact269

but it is covered by the shard given by the sizer (1, 1, 1) (the unit sphere is con-270

tained in the cube [−1, 1]3). The space Ĉ is homeomorphic to the usual unit271

sphere S2 := {(x, y, z) : x2 + y2 + z2 = 1} of R3, by means of the stereographic272

projection and its inverse Ĉ → S2. This function is regarded as a triple of pred-273

icates x, y, z : Ĉ → [−1, 1] where each will map an extended complex number to274

its corresponding real coordinate on the cube [−1, 1]3. Now fix the cubic com-275

plex polynomial p(s) := s3 − 1, and consider the map which performs one step276

in Newton’s method at a particular (extended) complex number s, for finding277

a root of p, γp : Ĉ → Ĉ. The explicit inner workings of γp are irrelevant for278

this example, except for the fact that it is a continuous mapping. It follows that279

(S3, {x, y, z}, {γk
p : k ∈ N}) is a CCS. The idea is that repeated applications of280

γp(s), γp ◦γp(s), γp ◦γp ◦γp(s), . . . would approximate a root of p provided s was281

a good enough initial guess.282
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The r•-type-shard is defined as L[r•] = L[r•] and Lsh is the union of all type-283

shards. Notice that Lsh is not necessarily equal to L = L, unless P is countable284

(see [ADIW24]). A transition is a map f : L → L, in particular, every element in the285

semigroup Γ is a transition (these are called realized computations). In practice, one286

would like to work with “definable” computations, i.e., ones that can be described287

by a computer. In this topological framework, being continuous is an expected re-288

quirement. However, as in the case of complete-types in model theory, we will work289

with “unrealized computations”, i.e., maps f : Lsh → Lsh. Note that continuity of290

a computation does not imply that it can be continuously extended to Lsh. The291

Extendibility Axiom (introduced in [ADIW24]) is a reasonable assumption made292

to work with a nice space of computations. For an extended discussion about this293

axiom, we refer the reader to [ADIW24].294

We say that the CCS (L,P, Γ) satisfies the Extendibility Axiom if for all γ ∈ Γ ,295

there is γ̃ : Lsh → Lsh such that for every sizer r• there is an s• such that296

γ̃|L[r•] : L[r•] → L[s•] is continuous.297

A collection R of sizers is called exhaustive if Lsh =
⋃

r•∈R L[r•]. We say that298

∆ ⊆ Γ is R-confined if γ|L[r•] : L[r•] → L[r•] for every r• ∈ R and γ ∈ ∆. Elements in299

∆ are called real-valued computations (in this article we will refer to them simply as300

computations) and elements in ∆ ⊆ LL
sh are called (real-valued) deep computations301

or ultracomputations. By ∆̃ we denote the set of all extensions γ̃ for γ ∈ ∆. For a302

more complete description of this framework, we refer the reader to [ADIW24].303

3.1. NIP and Baire-1 definability of deep computations. Under what con-304

ditions are deep computations Baire class 1, and thus well-behaved according to305

our framework, on type-shards? The next Theorem says that, again under the306

assumption that P is countable, the space of deep computations is a Rosenthal307

compactum (when restricted to shards) if and only if the set of computations has308

the NIP on features. Hence, we can import the theory of Rosenthal compacta into309

this framework of deep computations.310

Theorem 3.1. Let (L,P, Γ) be a CCS satisfying the Extendibility Axiom with P311

countable. Let R be an exhaustive collection of sizers. Let ∆ ⊆ Γ be R-confined. The312

following are equivalent.313

(1) ∆̃|L[r•] ⊆ B1(L[r•],L[r•]) for all r• ∈ R.314

(2) πP ◦ ∆|L[r•] has the NIP for all P ∈ P and r• ∈ R, that is, for all P ∈ P,
r• ∈ R, a < b, {γn}n∈N ⊆ ∆ there are finite disjoint E, F ⊆ N such that

L[r•] ∩
⋂
n∈E

(πP ◦ γn)
−1(−∞, a] ∩

⋂
n∈F

(πP ◦ γn)
−1[b,∞) = ∅.

Moreover, if any (hence all) of the preceding conditions hold, then every deep315

computation f ∈ ∆ can be extended to a Baire-1 function on shards, i.e., there is316

f̃ : Lsh → Lsh such that f̃|L[r•] ∈ B1(L[r•],L[r•]) for all r• ∈ R. In particular, on317

each shard every deep computation is the pointwise limit of a countable sequence of318

computations.319

Proof. Since P is countable, then L[r•] ⊆ RP is Polish. Also, the Extendibility320

Axiom implies that πP ◦ ∆̃|L[r•] is a pointwise bounded set of continuous functions321

for all P ∈ P. Hence, Theorem 2.9 and Lemma 2.10 prove the equivalence of (1)322

and (2). If (1) holds and f ∈ ∆, then write f = U limiγi as an ultralimit. Define323
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f̃ := U limiγ̃i. Hence, for all r• ∈ R we have f̃|L[r•] ∈ ∆̃|L[r•] ⊆ B1(L[r•],L[r•]). That324

every deep computation is a pointwise limit of a countable sequence of computations325

follows from the fact that for a Polish space X every compact subset of B1(X) is326

Fréchet-Urysohn (that is, a space where topological closures coincide with sequential327

closures, see Theorem 3F in [BFT78] or Theorem 4.1 in [Deb13]). □328

Given a countable set ∆ of computations satisfying the NIP on features and329

shards (condition (2) of Theorem 3.1) we have that ∆̃L[r•] (for a fixed sizer r•) is330

a separable Rosenthal Compactum (compact subset of B1(P ×L[r•]). The work of331

Todorčević ([Tod99]) and Argyros, Dodos, Kanellopoulos ([ADK08]) culminates in332

a trichotomy theorem for separable Rosenthal Compacta. Inspired by the work of333

Glasner and Megrelishvili ([GM22]), we are interested to see how this allows us to334

classify and obtain different levels of PAC-learnability (NIP).335

Recall that a topological space X is hereditarily separable (HS) if every subspace336

is separable and that X is first countable if every point in X has a countable local337

basis. Every separable metrizable space is hereditarily separable and it is a result338

of R. Pol that every hereditarily separable Rosenthal compactum is first countable339

(see section 10 in [Deb13]). This suggests the following definition:340

Definition 3.2. Let (L,P, Γ) be a CCS satisfying the Extendibility Axiom and R341

be an exhaustive collection of sizers. Let ∆ ⊆ Γ be an R-confined countable set of342

computations satisfying the NIP on shards and features (condition (2) in Theorem343

3.1). We say that ∆ is:344

(i) NIP1 if ∆̃|L[r•] is first countable for every r• ∈ R.345

(ii) NIP2 if ∆̃|L[r•] is hereditarily separable for every r• ∈ R.346

(iii) NIP3 if ∆̃|L[r•] is metrizable for every r• ∈ R.347

Observe that NIP3 ⇒ NIP2 ⇒ NIP1 ⇒ NIP. A natural question that would348

continue this work is to find examples of CCS that separate these levels of NIP. In349

[Tod99], Todorčević isolates 3 canonical examples of Rosenthal compacta that wit-350

ness the failure of the converse implications above. We now present some separable351

and non-separable examples of Rosenthal compacta:352

(1) Alexandroff compactification of a discrete space of size continuum. For each353

a ∈ 2N consider the map δa : 2N → R given by δa(x) = 1 if x = a and354

δa(x) = 0 otherwise. Let A(2N) = {δa : a ∈ 2N} ∪ {0}, where 0 is the zero355

map. Notice that A(2N) is a compact subset of B1(2
N), in fact {δa : a ∈ 2N}356

is a discrete subspace of B1(2
N) and its pointwise closure is precisely A(2N).357

Hence, this is a Rosenthal compactum which is not first countable. Notice358

that this space is also not separable.359

(2) Extended Alexandroff compactification. For each finite binary sequence s ∈360

2<N, let δs : 2N → R be given by δs(x) = 1 if x extends s and δs(x) =361

0 otherwise. Let Â(2N) be the pointwise closure of {δs : s ∈ 2<N}, i.e.,362

Â(2N) = A(2N) ∪ {δs : s ∈ 2<N}. Note that this space is a separable363

Rosenthal compactum which is not first countable.364

(3) Split Cantor. Let < be the lexicographic order in the space of infinite365

binary sequences, i.e., 2N. For each a ∈ 2N let f−a : 2N → R be given by366

f−a (x) = 1 if x < a and f−a (x) = 0 otherwise. Let f+a : 2N → R be given367

by f+a (x) = 1 if x ≤ a and f+a (x) = 0 otherwise. The split Cantor is the368
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space S(2N) = {f−a : a ∈ 2N} ∪ {f+a : a ∈ 2N}. This is a separable Rosenthal369

compactum. One example of a countable dense subset is the set of all f+a370

and f−a where a is an infinite binary sequence that is eventually constant.371

Moreover, it is hereditarily separable but it is not metrizable.372

(4) Alexandroff Duplicate. Let K be any compact metric space and consider
the Polish space X = C(K) ⊔ K, i.e., the disjoint union of C(K) (with its
supremum norm topology) and K. For each a ∈ K define g0

a, g
1
a : X → R as

follows:

g0
a(x) =

{
x(a), x ∈ C(K)
0, x ∈ K

g1
a(x) =

{
x(a), x ∈ C(K)
δa(x), x ∈ K

Let D(K) = {g0
a : a ∈ K} ∪ {g1

a : a ∈ K}. Notice that D(K) is a first373

countable Rosenthal compactum. It is not separable if K is uncountable.374

The interesting case will be when K = 2N.375

(5) Extended Alexandroff Duplicate of the split Cantor. For each finite binary
sequence t ∈ 2<N let at ∈ 2N be the sequence starting with t and ending
with 0’s and let bt ∈ 2N be the sequence starting with t and ending with
1’s. Define ht : 2

N → R by

ht(x) =

 0, x < at

1/2, at ≤ x ≤ bt

1, bt < x

Let D̂(S(2N)) be the pointwise closure of the set {ht : t ∈ 2<N}. Hence,376

D̂(S(2N)) is a separable first countable Rosenthal compactum which is not377

hereditarily separable. In fact, it contains an uncountable discrete subspace378

(see Theorem 5 in [Tod99]).379

Theorem 3.3 (Todorčević’s Trichotomy, [Tod99], Theorem 3 in [ADK08]). Let K380

be a separable Rosenthal Compactum.381

(i) If K is hereditarily separable but non-metrizable, then S(2N) embeds into K.382

(ii) If K is first countable but not hereditarily separable, then either D(2N) or383

D̂(S(2N)) embeds into K.384

(iii) If K is not first countable, then A(2N) embeds into K.385

In other words, we have the following classification:386

K is separable Rosenthal compactum

K is metrizable K is not metrizable

K is HS
(copy of S(I)) K is not HS

K is first countable
(copy of D(2N) or D̂(S(I)))

K is not first countable
(copy of A(2N))

387

Lastly, the definitions provided here for NIPi (i = 1, 2, 3) are topological.388
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Question 3.4. Is there a non-topological characterization for NIPi, i = 1, 2, 3?389

3.2. NIP and definability by universally measurable functions. We now390

turn to the question: what happens when P is uncountable? Notice that the391

countability assumption is crucial in the proof of Theorem 2.9 essentially because it392

makes RP a Polish space. For the uncountable case, we may lose Baire-1 definability393

so we shall replace B1(X) by a bigger class. Recall that the purpose of studying the394

class of Baire-1 functions is that a pointwise limit of continuous functions is not395

necessarily continuous. In [BFT78], J. Bourgain, D.H. Fremlin and M. Talagrand396

characterized the Non-Independence Property of a set of continuous functions with397

various notions of compactness in function spaces containing C(X), such as B1(X).398

In this section we will replace B1(X) with the larger space Mr(X) of universally399

measurable functions. The development of this section is based on Theorem 2F in400

[BFT78]. We now give the relevant definitions. Readers with little familiarity with401

measure theory can review the appendix for standard definitions appearing in this402

subsection.403

Given a Hausdorff space X and a measurable space (Y, Σ), we say that f : X → Y404

is universally measurable (with respect to Σ) if f−1(E) is universally measurable405

for every E ∈ Σ, i.e., f−1(E) is µ-measurable for every Radon probability measure406

µ on X. When Y = R we will always take Σ = B(R), the Borel σ-algebra of R.407

In that case, a function f : X → R is universally measurable if and only if f−1(U)408

is µ-measurable for every Radon probability measure µ on X and every open set409

U ⊆ R. Following [BFT78], the collection of all universally measurable real-valued410

functions will be denoted by Mr(X). In the context of deep computations, we will411

be interested in transition maps from a state space L ⊆ RP to itself. There are two412

natural σ-algebras one can consider in the product space RP : the Borel σ-algebra,413

i.e., the σ-algebra generated by open sets in RP ; and the cylinder σ-algebra, i.e.,414

the σ-algebra generated by Borel cylinder sets or equivalently basic open sets in415

RP . Note that when P is countable, both σ-algebras coincide but in general the416

cylinder σ-algebra is strictly smaller. We will use the cylinder σ-algebra to define417

universally measurable maps f : RP → RP . The reason for this choice is because of418

the following characterization:419

Lemma 3.5. Let X be a Hausdorff space and Y =
∏

i∈I Yi be any product of420

measurable spaces (Yi, Σi) for i ∈ I. Let ΣY be the cylinder σ-algebra generated by421

the measurable spaces (Yi, Σi). Let f : X → Y. The following are equivalent:422

(i) f : X → Y is universally measurable (with respect to ΣY).423

(ii) πi ◦ f : X → Yi is universally measurable (with respect to Σi) for all i ∈ I.424

Proof. (i)⇒(ii) is clear since the projection maps πi are measurable and the com-425

position of measurable functions is measurable. To prove (ii)⇒(i), suppose that426

C =
∏

i∈I Ci is a measurable cylinder and let J be the finite set of i ∈ I such that427

Ci ̸= Yi. Then, C =
⋂

i∈J π
−1
i (Ci) so f−1(C) =

⋂
i∈J(πi ◦ f)−1(Ci) is a universally428

measurable set by assumption. □429

The previous lemma says that a transition map is universally measurable if and430

only if it is universally measurable on all its features. In other words, we can check431

measurability of a transition just by checking measurability in all its features. We432

will denote by Mr(X,RP) the collection of all universally measurable functions433

f : X → RP (with respect to the cylinder σ-algebra), endowed with the topology of434

pointwise convergence.435
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Definition 3.6. Let (L,P, Γ) be a CCS. We say that a transition f : L → L is436

universally measurable shard-definable if and only if there exists f̃ : Lsh → Lsh437

extending f such that for every sizer r• there is a sizer s• such that the restriction438

f̃|L[r•] : L[r•] → L[s•] is universally measurable, i.e. πP ◦ f̃|L[r•] : L[r•] → [−sP, sP]439

is µ-measurable for every Radon probability measure µ on L[r•].440

We will need the following result about NIP and universally measurable func-441

tions:442

Theorem 3.7 (Bourgain-Fremlin-Talagrand, Theorem 2F in [BFT78]). Let X be a443

Hausdorff space and A ⊆ C(X) be pointwise bounded. The following are equivalent:444

(i) A ⊆ Mr(X).445

(ii) For every compact K ⊆ X, A|K has the NIP.446

Theorem 2.5 immediately yields the following.447

Theorem 3.8. Let (L,P, Γ) be a CCS satisfying the Extendibility Axiom. Let R448

be an exhaustive collection of sizers. Let ∆ ⊆ Γ be R-confined. If πP ◦ ∆|L[r•] has449

the NIP for all P ∈ P and all r• ∈ R, then every deep computation is universally450

measurable shard-definable.451

Proof. By the Extendibility Axiom, Theorem 2.5 and lemma 2.10 we have that452

πP ◦ ∆̃|L[r•] ⊆ Mr(L[r•]) for all r• ∈ R and P ∈ P. Let f ∈ ∆ be a deep computation.453

Write f = U limi γi as an ultralimit of computations in ∆. Define f̃ := U limi γ̃i.454

Then, for all r• ∈ R and P ∈ P πP ◦ γ̃i|L[r•] ∈ Mr(L[r•]) for all i so πP ◦ f|L[r•] ∈455

πP ◦ ∆̃|L[r•] ⊆ Mr(L[r•]). □456

Question 3.9. Under the same assumptions of the previous Theorem, suppose457

that every deep computation of ∆ is universally measurable shard-definable. Must458

πP ◦ ∆|L[r•] have the NIP for all P ∈ P and all r• ∈ R?459

3.3. Talagrand stability and definability by universally measurable func-460

tions. There is another notion closely related to NIP, introduced by Talagrand461

in [Tal84] while studying Pettis integration. Suppose that X is a compact Haus-462

dorff space and A ⊆ RX. Let µ be a Radon probability measure on X. Given a463

µ-measurable set E ⊆ X, a positive integer k and real numbers a < b. we write:464

Dk(A,E, a, b) =
⋃
f∈A

{x ∈ E2k : f(x2i) ≤ a, f(x2i+1) ≥ b for all i < k}

We say that A is Talagrand µ-stable if and only if for every µ-measurable465

set E ⊆ X of positive measure and for every a < b there is k ≥ 1 such that466

(µ2k)∗(Dk(A,E, a, b)) < (µ(E))2k. Notice that we work with the outer measure467

because it is not necessarily true that the sets Dk(A,E, a, b) are µ-measurable.468

This is certainly the case when A is a countable set of continuous (or µ-measurable)469

functions.470

The following lemma establishes that Talagrand stability is a way to ensure that471

deep computations are definable by measurable functions. We include the proof for472

the reader’s convenience.473

Lemma 3.10. If A is Talagrand µ-stable, then A is also Talagrand µ-stable and474

A ⊆ L0(X, µ).475
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Proof. First, observe that a subset of a µ-stable set is µ-stable. To show that A476

is µ-stable, observe that Dk(A,E, a, b) ⊆ Dk(A,E, a ′, b ′) where a < a ′ < b ′ <477

b and E is a µ-measurable set with positive measure. It suffices to show that478

A ⊆ L0(X, µ). Suppose that there exists f ∈ A such that f /∈ L0(X, µ). By a479

characterization of measurable functions (see 413G in [Fre03]), there exists a µ-480

measurable set E of positive measure and a < b such that µ∗(P) = µ∗(Q) = µ(E)481

where P = {x ∈ E : f(x) ≤ a} and Q = {x ∈ E : f(x) ≥ b}. Then, for any k ≥ 1:482

(P×Q)k ⊆ Dk({f}, E, a, b) so (µ2k)∗(Dk({f}, E, a, b)) = (µ∗(P)µ∗(Q))k = (µ(E))2k.483

Thus, {f} is not µ-stable, but we argued before that a subset of a µ-stable set must484

be µ-stable. □485

We say that A is universally Talagrand stable if A is Talagrand µ-stable for486

every Radon probability measure µ on X. A similar argument as before, yields the487

following:488

Theorem 3.11. Let (L,P, Γ) be a CCS satisfying the Extendibility Axiom. If489

πP ◦ ∆|L[r•] is universally Talagrand stable for all P ∈ P and all sizers r•, then490

every deep computation is universally measurable sh-definable.491

It is then natural to ask: what is the relationship between Talagrand stability and492

the NIP? We know that Theorem 3.7 and Fremlin’s Dichotomy (463K in [Fre03])493

imply:494

Lemma 3.12. Let X be a compact Hausdorff space and A ⊆ C(X) be pointwise495

bounded. If A is universally Talagrand stable, then A has the NIP.496

Question 3.13. Is the converse true?497

There is a delicate point in this question, as it may be sensitive to set-theoretic498

axioms (even assuming countability of A).499

Theorem 3.14 (Talagrand, Theorem 9-3-1(a) in [Tal84]). Let X be a compact500

Hausdorff space and A ⊆ Mr(X) be countable and pointwise bounded. Assume that501

[0, 1] is not the union of < c closed measure zero sets. If A has the NIP, then A is502

universally Talagrand stable.503

Theorem 3.15 (Fremlin, Shelah, [FS93]). It is consistent that there exists a count-504

able pointwise bounded set of Lebesgue measurable functions with the NIP which is505

not Talagrand stable with respect to Lebesgue measure.506

Appendix: Measure Theory507

Given a set X, a collection Σ of subsets of X is called a σ-algebra if Σ contains508

X and is closed under complements and countable unions. Hence, for example,509

a σ-algebra is also closed under countable intersections. Intuitively, a σ-algebra510

is a collection of sets in which we can define a σ-additive measure. We call sets511

in a σ-algebra Σ measurable sets and the pair (X,Σ) a measurable space. If X512

is a topological space, there is a natural σ-algebra of subsets of X, namely the513

Borel σ-algebra B(X), i.e., the smallest σ-algebra containing all open subsets of X.514

Given a measurable space (X,Σ), a σ-additive measure is a non-negative function515

µ : Σ → R with the property that µ(∅) = 0 and µ(
⋃∞

n=0 An) =
∑∞

n=0 µ(An)516

whenever {An : n ∈ N} ⊆ Σ is pairwise disjoint. We call (X,Σ, µ) a measure space.517

A σ-additive measure is called a probability measure if µ(X) = 1. A measure µ518
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is complete if for every A ⊆ B ∈ Σ, µ(B) = 0 implies A ∈ Σ. In words, subsets519

of measure-zero sets are always measurable (and hence, by the monotonicity of µ,520

have measure zero as well).521

A special example of the preceding concepts is that of a Radon measure. If X is522

a Hausdorff topological space, then a measure µ on the Borel sets of X is called a523

Radon measure if524

• for every open set U, µ(U) is the supremum of µ(K) over all compact K ⊆ U,525

that is, the measure of open sets may be approximated via compact sets;526

and527

• every point of X has a neighborhood U ∋ x for which µ(U) is finite.528

Perhaps the most famous example of a Radon measure on R is the Lebesgue529

measure of Borel sets. If X is finite, µ(A) := |A| (the cardinality of A) defined a530

Radon measure on X.531

While not immediately obvious, sets can be measurable according to one mea-532

sure, but non-measurable according to another. Given a measure space (X,Σ, µ)533

we say that a set E ⊆ X is µ-measurable if there are A,B ∈ Σ such that A ⊆ E ⊆ B534

and µ(B\A) = 0. The set of all µ-measurable sets is a σ-algebra containing Σ and535

it is denoted by Σµ. A set E ⊆ X is universally measurable if it is µ-measurable for536

every Radon probability measure on X. It follows that Borel sets are universally537

measurable.538

Recall that if {Xi : i ∈ I} is a collection of topological spaces indexed by some
set I, then the product space X :=

∏
i∈I Xi is endowed with the topology generated

by cylinders, that is, sets of the form
∏

i∈I Ui where each Ui is open in Xi, and
Ui = Xi except for finitely many indices i ∈ I. If each space is measurable, say we
pair Xi with a σ-algebra Σi, then there are multiple ways to interpret the product
space X as a measurable space, but the interpretation we care about in this paper
is the so called cylinder σ-algebra, as used in Lemma 3.5. Namely, let Σ be the
σ-algebra generated by sets of the form∏

i∈I

Ci, Ci ∈ Σi, Ci = Xi for all but finitely many i ∈ I.

We remark that when I is uncountable and Σi = B(Xi) for all i ∈ I, then Σ is,539

in general, strictly smaller than B(X).540
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