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ABSTRACT. This paper revisits and extends a bridge between functional anal-
ysis and model theory, emphasizing its relevance to the theoretical foundations
of machine learning. We show that the compactness behavior of families of
Baire class 1 functions mirrors the learnability conditions in the sense of Proba-
bly Approzimately Correct (PAC) learning, and that the failure of compactness
corresponds to the presence of infinite Vapnik-Chervonenkis (VC) dimension.
From this perspective, Rosenthal compacta emerge as the natural topological
counterpart of PAC-learnable concept classes, while NIP vs. IP structures
capture the precise boundary between analytical regularity and combinatorial
intractability. These parallels suggest a unified framework linking compact-
ness, definability, and learnability, exemplifying how the topology of function
spaces encodes the algorithmic and epistemic limits of prediction.

1. INTRODUCTION

Suppose that A is a subset of the real line R and that A is its closure. It is a
well-known fact that any point of closure of A, say x € A, can be approzimated
by points inside of A, in the sense that a sequence {xn}ney € A must exist with
the property that lim,, ., Xn = X. For most applications we wish to approximate
objects more complicated than points, such as functions.

Suppose we wish to build a neural network that decides, given an 8 by 8 black-
and-white image of a hand-written scribble, what single decimal digit the scrib-
ble represents. Maybe there exists f, a function representing an optimal solution
to this classifier. Thus if X is the set of all (possible) images, then for I € X,
f(I) € {0,1,2,...,9} is the “best” (or “good enough” for whatever deployment is
needed) possible guess. Training the neural network involves approximating f until
its guesses are within an acceptable error range. In general, f might be a function
defined on a more complicated topological space X.

Often computers’ viable operations are restricted (addition, subtraction, multi-
plication, division, etc.) and so we want to approximate a complicated function
using simple functions (like polynomials). The problem is that, in contrast with
mere points, functions in the closure of a set of functions need not be approximable
(meaning the pointwise limit of a sequence of functions) by functions in the set.

Functions that are the pointwise limit of continuous functions are Baire class 1
functions, and the set of all of these is denoted by B7(X). Notice that these are
not necessarily continuous themselves! A set of Baire class 1 functions, A, will be
relatively compact if its closure consists of just Baire class 1 functions (we delay the
formal definition of relatively compact until Section 2, but the fact mentioned here
is sufficient). The Bourgain-Fremlin-Talagrand (BFT) theorem reveals a precise
correspondence between relative compactness in Bj(X) and the model-theoretic
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notion of Non-Independence Property (NIP). This was realized by Pierre Simon in
[Sim15b].

Simon’s insight was to view definable families of functions as sets of real-valued
functions on type spaces and to interpret relative compactness in B;(X) as a form
of “tame behavior” under ultrafilter limits. From this perspective, NIP theories are
those whose definable families behave like relatively compact sets of Baire class 1
functions, avoiding the wild, BN-like configurations that witness instability. This
observation opened a new bridge between analysis and logic: topological compact-
ness corresponds to the absence of combinatorial independence. Simon’s later de-
velopments connected these ideas to Keisler measures and empirical averages, al-
lowing tools from functional analysis to be used to study learnability and definable
types. This reinterpretation of model-theoretic tameness through the lens of the
BFT theorem has made NIP a central notion not only in stability theory but also
in contemporary connections with learning theory and ergodic analysis.

Historically, the notion of NIP arises from Shelah’s foundational work on the
classification theory of models. In his seminal book Unstable Theories [She78],
Shelah introduced the independence property as a key dividing line within unstable
structures, identifying the class of stable theories inside those in which this property
fails. Fix a first-order formula @(x,y) in a language L and a model M of an L-
theory T. We say that @(x,y) has the independence property (IP) in M if there is
a sequence (ci)ien € MX such that for every S C N there is as € MYl with

vieN, ME @(ci,as) < 1ieS.

The formula ¢(x,y) has the IP if it does so in some model M, and the formula
has the non-independence property (NIP) if it does not have the IP. The latter
notion of NIP generalizes stability by forbidding the full combinatorial indepen-
dence pattern while allowing certain controlled forms of unstability. Thus, Simon’s
interpretation of the BFT theorem can be viewed as placing Shelah’s dividing line
into a topological-analytic framework, connecting the earliest notions of stability
to compactness phenomena in spaces of Baire class 1 functions.

One of the most important innovations in Machine Learning is the mathemati-
cal notion, introduced by Turing Awardee Leslie Valiant in the 1980s, of ‘probably
approximately correct learning’, or PAC-learning for short [BD19]. We give a stan-
dard but short overview of these concepts in the context that is relevant to this
work.

Consider the following important idea in data classification. Suppose that A is
a set and that C is a collection of sets. We say that C shatters A if every subset
of A is of the form CN A for some C € C. For a classical geometric example, if
A is the set of four points on the Euclidean plane of the form (+1,+1), then the
collection of all half-planes does not shatter A, the collection of all open balls does
not shatter A, but the collection of all convex sets shatters A. While A need not be
finite, it will usually be assumed to be so in Machine Learning applications. A finer
way to distinguish collections of sets that shatter a given set from those that do
not is by the Vapnik-Chervonenkis dimension (VC-dimension), which is equal to
the cardinality of the largest finite set shattered by the collection, in case it exists,
or to infinity otherwise.

A concrete illustration of these ideas appears when considering threshold clas-
sifiers on the real line. Let H be the collection of all indicator functions h; given
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DEEP COMPUTATIONS AND NIP 3

by h¢(x) = 1 if x < t and hy(x) = 0 otherwise. Each h; is a Baire class 1 func-
tion, and the family H is relatively compact in B7(R). In model-theoretic terms,
‘H is NIP, since no configuration of points and thresholds can realize the full inde-
pendence pattern of a binary matrix. By contrast, the family of parity functions
{x = (=)™ :w € {0,1™} on {0, 1}™ (here (W, x) is the usual vector dot product)
has the independence property and fails relative compactness in Bq(X), capturing
the analytical meaning of instability. This dichotomy mirrors the behavior of con-
cept classes with finite versus infinite VC dimension in statistical learning theory.
Going back to the model theoretic framework, let

Fo(M) :={@(M,a):a c MV}

be the family of subsets of MIX! defined by instances of the formula ¢, where
@ (M, a) is the set of |x|-tuples ¢ in M for which M | @(c,a). The fundamental
theorem of statistical learning states that a binary hypothesis class is PAC-learnable
if and only if it has finite VC-dimension, and the subsequent theorem connects the
rest of the concepts presented in this section.

Theorem 1.1 (Laskowski). The formula @(x,y) has the NIP if and only if F,(M)
has finite VC-dimension.

For two simple examples of formulas satisfying the NIP, consider first the lan-
guage L = {<} and the model M = (R, <) of the reals with their usual linear order.
Take the formula @(x,y) to mean x <y, then ¢(M, a) = (—o0, a), and so F, (M)
is just the set of left open rays. The VC-dimension of this collection is 1, since it
can shatter a single point, but no two point set can be shattered since the rays are
downwards closed. Now in contrast, the collection of open intervals, given by the
formula @(x;y1,y2) == (Y1 < x) A (x < y2), has VC-dimension 2.

In this work, we study the corresponding notions of NIP (and hence PAC-
learnability) in the context of Compositional Computation Structures introduced
in [ADIW24].

2. GENERAL TOPOLOGICAL PRELIMINARIES

In this section we give preliminaries from general topology and function space
theory. We include some of the proofs for completeness but a reader familiar with
these topics may skip them.

A Polish space is a separable and completely metrizable topological space. The
most important examples are the reals R, the Cantor space 2" (the set of all infinite
binary sequences, endowed with the product topology), and the Baire space N (the
set of all infinite sequences of naturals, also with the product topology). Countable
products of Polish spaces are Polish; this includes spaces like RY, the space of
sequences of real numbers. A subspace of a Polish space is itself Polish if and only
if it is a Gg-set, that is, it can be written as the intersection of a countable family
of open subsets; in particular, closed subsets and open subsets of Polish spaces are
also Polish spaces.

In this work we talk a lot about subspaces, and so there is a pertinent subtlety
of the definitions worth mentioning: completely metrizable space is not the same
as complete metric space; for an illustrative example, notice that (0,1) is home-
omorphic to the real line, and thus a Polish space (being Polish is a topological
property), but with the metric inherited from the reals, as a subspace, (0, 1) is not
a complete metric space. In summary, a Polish space has its topology generated by
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some complete metric, but other metrics generating the same topology might not
be. In practice, such as when studying descriptive set theory, one finds that we can
often keep the metric implicit.

Given two topological spaces X and Y we denote by B7(X,Y) the set of all func-
tions f : X — Y such that for all open U C Y, f~'[U] is an F, subset of X (that
is, a countable union of closed sets); we call these types of functions Baire class
1 functions. When Y = R we simply denote this collection by Bj(X). We en-
dow B;(X,Y) with the topology of pointwise convergence (the topology inherited
from the product topology of YX). By Cp(X,Y) we denote the set of all contin-
uous functions f : X — Y with the topology of pointwise convergence. Similarly,
Cp(X) == Cp(X,R). A natural question is, how do topological properties of X
translate to C,(X) and vice versa? These questions, and in general the study of
these spaces, are the concern of Cp-theory, an active field of research in general
topology which was pioneered by A. V. Arhangel’skii and his students in the 1970’s
and 1980’s. This field has found many exciting applications in model theory and
functional analysis. Good recent surveys on the topics include [HT23] and [Tkall].
We begin with the following:

Fact 2.1. If all open subsets of X are F, (in particular if X is metrizable), then
Cp(X,Y) C B1(X,Y).

The proof of the following fact (due to Baire) can be found in Section 10 of
[Tod97].

Fact 2.2 (Baire). If X is a complete metric space, then the following are equivalent:
(i) fis a Baire class 1 function, that is, f € B1(X).
(i) f is a pointwise limit of continuous functions.
(iii) For every closed F C X, the restriction flg has a point of continuity.
Moreover, if X is Polish and f ¢ B1(X), then there exists countable Do,D7 C X and
reals a < b such that Do = D7, Do C f~'(—o00, al and D7 C f~'[b, c0).

A subset L C X is relatively compact in X if the closure of L in X is compact.
Relatively compact subsets of Bj(X) (for X Polish space) have been objects of
interest to many people working in Analysis and Topological Dynamics. We begin
with the following well-known result. Recall that a set A C RX of real-valued
functions is pointwise bounded if for every x € X there is M, > 0 such that [f(x)| <
M, for all f € A. We include the proof for the reader’s convenience:

Lemma 2.3. Let X be a Polish space and A C B1(X) be pointwise bounded. The
following are equivalent:

(i) A is relatively compact in By (X).

(i) A is relatively countably compact in By (X), i.e., every countable subset of

A has an accumulation point in By (X).
(iii) A C B1(X), where A denotes the closure in RX.

Proof. By definition, being pointwise bounded means that there is, for each x € X,
M, > 0 such that, for every f € A, |f(x)| < M.

(i)=(ii) holds in general.

(ii)=>(iii) Assume that A is relatively countably compact in B;(X) and that
f € A\ B1(X). By Fact 2.2, there are countable Do, D7 C X with Dy = D7, and
a < b such that Dy C f~'(—o0,al and Dy C f'[b,00). We claim that there is a
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DEEP COMPUTATIONS AND NIP 5

sequence {f; ey € A such that for all x € Do UDq, limy, o frn(x) = f(x). Indeed,
use the countability to enumerate Do UD7 as {xnnen. Then find, for each positive
n, f, € A with [, (xi) — f(xi)] < % for all i < n. The claim follows.

By relative countable compactness of A, there is an accumulation point g €
B (X) of {fn nen- It is straightforward to show that since f and g agree on Dy UDj,
g does not have a point of continuity on the closed set Dy = D7, which contradicts
Fact 2.2.

(iii)=>(i) Suppose that A C B7(X). Then A N B1(X) = A is a closed subset of
[ [iex[=Mx, M]; Tychonoft’s theorem states that the product of compact spaces
is always compact, and since closed subsets of compact spaces are compact, A must
be compact, as desired. O

2.1. From Rosenthal’s dichotomy to NNIP. The fundamental idea that con-
nects the rich theory here presented to real-valued computations is the concept
of an approximation. In the reals, points of closure from some subset can always
be approximated by points inside the set, via a convergent sequence. For more
complicated spaces, such as Cp(X), this fails in a remarkably intriguing way. Let
us show an example that is actually the protagonist of a celebrated result. Con-
sider the Cantor space X = 2N and let pn(x) = x(n) define a continuous mapping
X — {0,1}. Then one can show (see Chapter 1.1 of [Tod97] for details) that, per-
haps surprisingly, the only continuous functions in the closure of {pnnen are the
functions pn themselves; moreover, none of the subsequences of {pnnen converge.
In some sense, this example is the worst possible scenario for convergence. The
topological space obtained from this closure is well-known. Topologists refer to it
as the Stone-Cech compactification of the discrete space of natural numbers, or BN
for short, and it is an important object of study in general topology.

Theorem 2.4 (Rosenthal’s Dichotomy). If X is Polish and {fn} C C,(X) is point-
wise bounded, then either {fyinen contains a convergent subsequence or a subse-
quence whose closure (in RX ) is homeomorphic to BN.

In other words, a pointwise bounded set of continuous functions will either con-
tain a subsequence that converges or a subsequence whose closure is essentially
the same as the example mentioned in the previous paragraphs (the worst possible
scenario). Note that in the preceding example, the functions are trivially pointwise
bounded in RX as the functions can only take values 0 and 1.

If we intend to generalize our results from Cp,(X) to the bigger space B (X), we
find a similar dichotomy. Either every point of closure of the set of functions will
be a Baire class 1 function, or there is a sequence inside the set that behaves in the
worst possible way (which in this context, is the IP!). The theorem is usually not
phrased as a dichotomy but rather as an equivalence (with the NIP instead):

Theorem 2.5 (Bourgain-Fremlin-Talagrand, Theorem 4G in [BFT78]). Let X be
a Polish space and A C Cy(X) be pointwise bounded. The following are equivalent:
(i) A is relatively compact in Bq(X), i.e., A C By(X).
(i) For every {fuinen € A and for every a < b there is  C N such that
() ' (—o0,al N () £, [b,00) = .
nel n¢l

Our goal now is to characterize relatively compact subsets of B;(X,Y) when
Y = R? with P countable. Given P € P we denote the projection map onto the
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P-coordinate by 7p : R” — R. From a high-level topological interpretation, the
subsequent lemma states that, in this context, the spaces R and R” are really not
that different, and that if we understand the Baire class 1 functions of one space,
then we also understand the functions of both. In fact, R and any other Polish
space is embeddable as a closed subspace of R”.

Lemma 2.6. Let X be a Polish space and P be a countable set. Then, f € B1(X,R7)
if and only if p o f € B1(X) for all P € P.

Proof. Only one implication needs a proof. Suppose that 7tp o f € B;(X) for all
P € P. Let V be a basic open subset of R”. That is, there exists a finite P’ C P
such that V = nPeP’ 7'[;1 [Up] where Up is open in R. Finally,

fVI= () (mp o f) 7' [Up]
PeP’

is an Fy set. Since P is countable, R” is second countable so every open set U in
R7 is a countable union of basic open sets. Hence, f~1U] is Fg. O

Below we consider P with the discrete topology. For each f : X — R” denote
?\(P,x) :=71tp o f(x) for all (P,x) € P x X. Similarly, for each g: P x X — R denote
g(x)(P) :== g(P,x). Given A C (R*)X, we denote A as the set of all f such that
feA.

The map (RP)X — RP>*X given by f — f is a homeomorphism and its inverse is
given by g — g.

Lemma 2.7. Let X be a Polish space and P be countable. Then, f € B1(X,RP) if
and only if £ € B1(P x X).

Proof. (=) Given an open set of reals U, we have that for every P € P, f~! [7r;1 [uj]
is F¢ by Lemma 2.6. Given that P is a discrete countable space, we observe that

~

= | Py £ ' Ul)
PeP
is also an Fs set. (&) By lemma 2.6 it suffices to show that 7tp o f € By (X) for all
P € P. Fix an open U C R. Write U] = UneN F,, where F,, is closed in P x X.
Then,
(mp o f) 7' [UT = | {x € X: (Px) € Fu}
nenN
which is Fs. O

We now direct our attention to a notion of the NIP that is more general than
the one from the introduction. It can be interpreted as a sort of continuous version
of the one presented in the preceding section.

Definition 2.8. We say that A C RX has the Non-Independence Property (NIP)
if and only if for every {fn,jnen € A and for every a < b there are finite disjoint
sets E, F C N such that

(] fn'(—00,aln () ' [b,00) = 0.

nek neF
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Note that if X is compact and A C C,(X), then A has the NIP if and only if for
every {fn}nen € A and for every a < b there is I C N such that

() ' (—o0,al N () £, [b,00) = .
nel ngl

Given A C YX and K C X we write Alx := {flx : f € A}, i.e., the set of
all restrictions of functions in A to K. The following Theorem is a slightly more
general version of Theorem 2.5.

Theorem 2.9. Assume that P is countable, X is a Polish space, and A C Cp (X, RP)
is such that Ttp o A is pointwise bounded for all P € P. The following are equivalent
for every compact K C X:

(1) Al € B1(K,RP).
(2) mp o Alg has the NIP for every P € P.
Proof. (1)=(2). Let P € P. Fix {falnen € A and a < b. By (1) we have that
Alx € B1(K,R?). Applying the homeomorphism f — f and using lemma 2.7 we
get Alpxk C B1(P x K). By Theorem 2.5, there is I C N such that
-1 -1
(PxK)N () fa  (—oo,aln (] [by00) =10

nel n¢l

Hence,
KN () (o ) (—00,al N [ (7p o Fn) " [b,00) = 0
nel ne¢l
By compactness, there are finite E C I and F C N\I such that

KN () (mp o f) ! (o0, al N () (7tp 0 ) ' [b,00) =0
nek ner
Thus, 7tp o Alp has the NIP.
(2)=(1) Fix f € Alg. By lemma 2.6 it suffices to show that 7tp o f € By(K)
for all P € P. By (2), mp o Alx has the NIP. Hence, by Theorem 2.5 we have
7'(POA|K QB1(K) But then 7TpOf€7T]>OA|K QB](K) [l

Lastly, a simple but significant result that helps understand the operation of
restricting a set of functions to a specific subspace of the domain space X, of course
in the context of the NIP, is that we may always assume that said subspace is
closed. Concretely, whether we take its closure or not has no effect on the NIP:

Lemma 2.10. Assume that X is Hausdorff and that A C C,(X). The following
are equivalent for every L C X:

(i) AL has the NIP.

(it) Alr has the NIP.

Proof. Tt suffices to show that (i)=(ii). Suppose that (ii) does not hold, i.e., that
there are {f}neny € A and a < b such that for all finite disjoint E,F C N:

LN () fa'(—oo,aln () " [b,00) # 0.
nek neF

Pick a’ < b’ such that a < a’ < b’ < b. Then, for any finite disjoint E,F C N we
can choose

xeLln ) fa'(—o0,a’) N ) ' (b, 00)
nek neF
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By definition of closure:

LN ﬂ 1 (—o0,a’lN ﬂ f-1[b’, 00) # 0.

nek neF

This contradicts (i). O

3. NIP IN THE CONTEXT OF COMPOSITIONAL COMPUTATION STRUCTURES

In this section, we study what the NIP tell us in the context of deep compu-
tations as defined in [ADIW24]. We say a structure (L, P,T) is a Compositional
Computation Structure (CCS) if L C R” is a subspace of R”, with the pointwise
convergence topology, and I' C LT is a semigroup under composition. The motiva-
tion for CCS comes from (continuous) model theory, where P is a fixed collection
of predicates and L is a (real-valued) structure. Every point in L is identified with
its “type”, which is the tuple of all values the point takes on the predicates from
P, i.e., an element of R”. In this context, elements of P are called features. In the
discrete model theory framework, one views the space of complete-types as a sort of
compactification of the structure L. In this context, we don’t want to consider only
points in L (realized types) but in its closure L (possibly unrealized types). The
problem is that the closure L is not necessarily compact, an assumption that turns
out to be very useful in the context of continuous model theory. To bypass this
problem in a framework for deep computations, Alva, Duenez, lovino and Walton
introduced in [ADIW24] the concept of shards, which essentially consists in cover-
ing (a large fragment) of the space L by compact, and hence pointwise-bounded,
subspaces (shards). We shall give the formal definition next.

A sizer is a tuple 14 = (rp)pep of positive real numbers indexed by P. Given a
sizer 1o, we define the ro-shard as:

Lired =L [ [=rp,7e]
PeP

For an illustrative example, we can frame Newton’s polynomial root approxima-
tion method in the context of a CCS (see Example 5.6 of [ADIW24] for details) as
follows. Begin by considering the extended complex numbers ¢t=cu {oo} with
the usual Riemann sphere topology that makes it into a compact space (where
unbounded sequences converge to oo). In fact, not only is this space compact
but it is covered by the shard given by the sizer (1,1,1) (the unit sphere is con-
tained in the cube [—~1,1]3). The space € is homeomorphic to the usual unit
sphere S? = {(x,y,2) : x* +y? + 2z = 1} of R?, by means of the stereographic
projection and its inverse € — S2. This function is regarded as a triple of pred-
icates x,Y,z : ¢ - [—1,1] where each will map an extended complex number to
its corresponding real coordinate on the cube [—1,1]3. Now fix the cubic com-
plex polynomial p(s) := s3> — 1, and consider the map which performs one step
in Newton’s method at a particular (extended) complex number s, for finding
a root of p, vyp : ¢ — C. The explicit inner workings of y, are irrelevant for
this example, except for the fact that it is a continuous mapping. It follows that
(S3,{x,y, 2}, {y‘; : k € N}) is a CCS. The idea is that repeated applications of
Yp(s)yYpoYp(s)yYpoYpoYpl(s),... would approximate a root of p provided s was
a good enough initial guess.
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The 1o-type-shard is defined as L[r,] = L[ro] and L is the union of all type-
shards. Notice that Lg}, is not necessarily equal to £ = L, unless P is countable
(see [ADIW24]). A transition is a map f: L — L, in particular, every element in the
semigroup " is a transition (these are called realized computations). In practice, one
would like to work with “definable” computations, i.e., ones that can be described
by a computer. In this topological framework, being continuous is an expected re-
quirement. However, as in the case of complete-types in model theory, we will work
with “unrealized computations”, i.e., maps f: L5, — Lsn. Note that continuity of
a computation does not imply that it can be continuously extended to Lgn. The
Extendibility Axiom (introduced in [ADIW24]) is a reasonable assumption made
to work with a nice space of computations. For an extended discussion about this
axiom, we refer the reader to [ADIW24].

We say that the CCS (L, P, T") satisfies the Extendibility Axiom if for all y € T,
there is v : Lsn — Lgsn such that for every sizer r, there is an s, such that
Ylcira @ LIre] — Llse] is continuous.

A collection R of sizers is called ezhaustive if Lo, = Ur.eR Llre.]. We say that
A C T is R-confined if vl r,] : Llre] — L[r,] for every ro € Rand vy € A. Elements in
A are called real-valued computations (in this article we will refer to them simply as
computations) and elements in A C L%, are called (real-valued) deep computations
or ultracomputations. By A we denote the set of all extensions ¥ for y € A. For a
more complete description of this framework, we refer the reader to [ADIW24].

3.1. NIP and Baire-1 definability of deep computations. Under what con-
ditions are deep computations Baire class 1, and thus well-behaved according to
our framework, on type-shards? The next Theorem says that, again under the
assumption that P is countable, the space of deep computations is a Rosenthal
compactum (when restricted to shards) if and only if the set of computations has
the NIP on features. Hence, we can import the theory of Rosenthal compacta into
this framework of deep computations.

Theorem 3.1. Let (L,P,T") be a CCS satisfying the Extendibility Aziom with P
countable. Let R be an exhaustive collection of sizers. Let A C T be R-confined. The
following are equivalent.

(1) Alg) € By(LIra], LIra]) for all e € R.
(2) mp o Al .1 has the NIP for all P € P and ve € R, that is, for all P € P,
Te €ER, a < b, {ynlnen C A there are finite disjoint E,F C N such that

Llrsl N ﬂ (7tp O'Ynjil (—o0,aln ﬂ (Ttp O'Yn)il [b,00) = 0.
nek ner

Moreover, if any (hence all) of the preceding conditions hold, then every deep
computation f € A can be extended to a Baire-1 function on shards, i.e., there is
f: Lsn — Lsn such that ﬂﬁ[r.] € B1(LIrel, Lre]) for all v € R. In particular, on
each shard every deep computation is the pointwise limit of a countable sequence of
computations.

Proof. Since P is countable, then L£[r,] C R” is Polish. Also, the Extendibility
Axiom implies that 7tp o A £[r.] is a pointwise bounded set of continuous functions
for all P € P. Hence, Theorem 2.9 and Lemma 2.10 prove the equivalence of (1)
and (2). If (1) holds and f € A, then write f = Ulim;y; as an ultralimit. Define
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fi= Ulim;y;. Hence, for all r, € R we have ﬂﬁ[r.] IS AIL[T.] C B1(L[rel, L[re]). That
every deep computation is a pointwise limit of a countable sequence of computations
follows from the fact that for a Polish space X every compact subset of By (X) is
Fréchet-Urysohn (that is, a space where topological closures coincide with sequential
closures, see Theorem 3F in [BFT78] or Theorem 4.1 in [Deb13)). O

Given a countable set A of computations satisfying the NIP on features and

shards (condition (2) of Theorem 3.1) we have that Az, (for a fixed sizer v,) is
a separable Rosenthal Compactum (compact subset of By (P x L[rs]). The work of
Todoréevié¢ ([Tod99]) and Argyros, Dodos, Kanellopoulos ([ADKO08]) culminates in
a trichotomy theorem for separable Rosenthal Compacta. Inspired by the work of
Glasner and Megrelishvili ([GM22]), we are interested to see how this allows us to
classify and obtain different levels of PAC-learnability (NIP).

Recall that a topological space X is hereditarily separable (HS) if every subspace
is separable and that X is first countable if every point in X has a countable local
basis. Every separable metrizable space is hereditarily separable and it is a result
of R. Pol that every hereditarily separable Rosenthal compactum is first countable
(see section 10 in [Debl13]). This suggests the following definition:

Definition 3.2. Let (L,P,T") be a CCS satisfying the Extendibility Axiom and R
be an exhaustive collection of sizers. Let A C T be an R-confined countable set of
computations satisfying the NIP on shards and features (condition (2) in Theorem
3.1). We say that A is:

(i) NIPy if Alz[y,; is first countable for every 1o € R.

(ii) NIP, if A|L[T.] is hereditarily separable for every 1o € R.

(iti) NIP3 if Al is metrizable for every to € R.

Observe that NIP3 = NIP, = NIP; = NIP. A natural question that would
continue this work is to find examples of CCS that separate these levels of NIP. In
[Tod99], Todorécevié isolates 3 canonical examples of Rosenthal compacta that wit-
ness the failure of the converse implications above. We now present some separable
and non-separable examples of Rosenthal compacta:

(1) Alexandroff compactification of a discrete space of size continuum. For each
a € 2" consider the map 8, : 2 — R given by 84(x) = 1 if x = a and
5a(x) = 0 otherwise. Let A(2N) = {84 : a € 2N} U {0}, where 0 is the zero
map. Notice that A(2Y) is a compact subset of B;(2V), in fact {64 : a € 2V}
is a discrete subspace of B1(2V) and its pointwise closure is precisely A(2V).
Hence, this is a Rosenthal compactum which is not first countable. Notice
that this space is also not separable.

(2) Extended Alexandroff compactification. For each finite binary sequence s €
2<N let 8¢ : 2§ — R be given by 85(x) = 1 if x extends s and &s(x) =
0 otherwise. Let A(2N) be the pointwise closure of {8 : s € 2<N}, i,
AN) = A2Y) U {ds : s € 2<N}. Note that this space is a separable
Rosenthal compactum which is not first countable.

(3) Split Cantor. Let < be the lexicographic order in the space of infinite
binary sequences, i.e., 2. For each a € 2V let f; : 2¥ — R be given by

fo(x) = 1if x < a and f,(x) = 0 otherwise. Let ff : 2¥ — R be given

a

by fi(x) =1if x < a and f}(x) = 0 otherwise. The split Cantor is the
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space S(2Y) = {f; : a € 2Y}U{f{ : a € 2}, This is a separable Rosenthal
compactum. One example of a countable dense subset is the set of all
and f, where a is an infinite binary sequence that is eventually constant.
Moreover, it is hereditarily separable but it is not metrizable.

Alezandroff Duplicate. Let K be any compact metric space and consider
the Polish space X = C(K) UK, i.e., the disjoint union of C(K) (with its
supremum norm topology) and K. For each a € K define gg, 911 : X = Ras

follows: ik
= { ol xS0
_ x(a), x € C(K)

9a(x) = { dalx)y, xe€K

Let D(K) = {¢g% : @ € K}U{g} : a € K}). Notice that D(K) is a first
countable Rosenthal compactum. It is not separable if K is uncountable.
The interesting case will be when K = 2N,

Ezxtended Alexandroff Duplicate of the split Cantor. For each finite binary
sequence t € 2<N let a; € 2V be the sequence starting with t and ending
with 0’s and let by € 2N be the sequence starting with t and ending with
1’s. Define hy : 2N¥ - R by

0, x < ay
hi(x) = 1/2, a¢ <x<by
1) bt<X

Let D(S(2Y)) be the pointwise closure of the set {hy : t € 2<N}. Hence,
D(S(2Y)) is a separable first countable Rosenthal compactum which is not

hereditarily separable. In fact, it contains an uncountable discrete subspace
(see Theorem 5 in [Tod99]).

Theorem 3.3 (Todorcevié’s Trichotomy, [Tod99], Theorem 3 in [ADKO08]). Let K
be a separable Rosenthal Compactum.

(i) If K is hereditarily separable but non-metrizable, then S(2V) embeds into K.

(ii) If X is first countable but not hereditarily separable, then either D(2V) or

D(S(2Y)) embeds into K.

(iii) If K is not first countable, then A(2Y) embeds into K.

In other words, we have the following classification:

K is separable Rosenthal compactum

Y

K is metrizable K is not metrizable

Kis HS/ \

(copy of S(I)) K is not HS

N

K is first countable K is not first countable
(copy of D(2V) or ﬁ(S(I))) (copy of A(2Y))

Lastly, the definitions provided here for NIP; (i = 1,2,3) are topological.
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Question 3.4. Is there a non-topological characterization for NIP;, i =1,2,37

3.2. NIP and definability by universally measurable functions. We now
turn to the question: what happens when P is uncountable? Notice that the
countability assumption is crucial in the proof of Theorem 2.9 essentially because it
makes R” a Polish space. For the uncountable case, we may lose Baire-1 definability
so we shall replace B (X) by a bigger class. Recall that the purpose of studying the
class of Baire-1 functions is that a pointwise limit of continuous functions is not
necessarily continuous. In [BFT78], J. Bourgain, D.H. Fremlin and M. Talagrand
characterized the Non-Independence Property of a set of continuous functions with
various notions of compactness in function spaces containing C(X), such as Bq(X).
In this section we will replace B (X) with the larger space M. (X) of universally
measurable functions. The development of this section is based on Theorem 2F in
[BFT78]. We now give the relevant definitions. Readers with little familiarity with
measure theory can review the appendix for standard definitions appearing in this
subsection.

Given a Hausdorff space X and a measurable space (Y, X), we say that f: X — Y
is universally measurable (with respect to L) if f~1(E) is universally measurable
for every E € L, i.e., f~'(E) is u-measurable for every Radon probability measure
pon X. When Y = R we will always take ¥ = B(R), the Borel o-algebra of R.
In that case, a function f : X — R is universally measurable if and only if f~1(U)
is p-measurable for every Radon probability measure p on X and every open set
U C R. Following [BFT78], the collection of all universally measurable real-valued
functions will be denoted by M, (X). In the context of deep computations, we will
be interested in transition maps from a state space L C R” to itself. There are two
natural o-algebras one can consider in the product space R”: the Borel o-algebra,
i.e., the o-algebra generated by open sets in R”; and the cylinder o-algebra, i.e.,
the o-algebra generated by Borel cylinder sets or equivalently basic open sets in
R”. Note that when P is countable, both o-algebras coincide but in general the
cylinder o-algebra is strictly smaller. We will use the cylinder o-algebra to define
universally measurable maps f : R” — R”. The reason for this choice is because of
the following characterization:

Lemma 3.5. Let X be a Hausdorff space and Y = [];c;Yi be any product of
measurable spaces (Yi,Li) for i € 1. Let Ly be the cylinder o-algebra generated by
the measurable spaces (Yi, Li). Let f: X — Y. The following are equivalent:

(i) f:X =Y is universally measurable (with respect to Ly ).
(i) o f: X — Y is universally measurable (with respect to L;) for alli € L

Proof. (1)=(ii) is clear since the projection maps 7t; are measurable and the com-
position of measurable functions is measurable. To prove (ii)=(i), suppose that
C = []ic1 Ci is a measurable cylinder and let J be the finite set of i € I such that
Ci #Y;. Then, C = ﬂie] 7'[1_1 (Ci) so f1(C) = ﬂiel(ﬁi o f)~1(Cy) is a universally
measurable set by assumption. O

The previous lemma says that a transition map is universally measurable if and
only if it is universally measurable on all its features. In other words, we can check
measurability of a transition just by checking measurability in all its features. We
will denote by M, (X,R”) the collection of all universally measurable functions
f: X — R” (with respect to the cylinder o-algebra), endowed with the topology of
pointwise convergence.
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Definition 3.6. Let (L,P,T) be a CCS. We say that a transition f : L — L is
universally measurable shard-definable if and only if there exists f:Lsn — Len
extending f such that for every sizer r, there is a sizer s, such that the restriction
flur.] : Lre] — L[se] is universally measurable, i.e. 7tp o ﬂur.] : Llry] — [—sp, sp]
is p-measurable for every Radon probability measure p on L[r,].

We will need the following result about NIP and universally measurable func-
tions:

Theorem 3.7 (Bourgain-Fremlin-Talagrand, Theorem 2F in [BFT78]). Let X be a
Hausdorff space and A C C(X) be pointwise bounded. The following are equivalent:
(i) A C My(X).
(i) For every compact K C X, Alx has the NIP.

Theorem 2.5 immediately yields the following.

Theorem 3.8. Let (L,P,T") be a CCS satisfying the Extendibility Axziom. Let R
be an exhaustive collection of sizers. Let A C T be R-confined. If mp o Alr[y,] has
the NIP for all P € P and all vq € R, then every deep computation is universally
measurable shard-definable.

Proof. By the Extendibility Axiom, Theorem 2.5 and lemma 2.10 we have that
7tp 0 Alzira) € My (L[1,]) for all g € Rand P € P. Let f € A be a deep computation.
Write f = ¢/ lim;y; as an ultralimit of computations in A. Define f := I/ lim; ¥;.
Then, for all rq € R and P € P 7tp 0 Vilzr,) € My (L[re]) for all i so 7p o flgp,) €

7tp 0 Al € My (L[T)). 0

Question 3.9. Under the same assumptions of the previous Theorem, suppose
that every deep computation of A is universally measurable shard-definable. Must
7tp © AlL[y,) have the NIP for all P € P and all o € R?

3.3. Talagrand stability and definability by universally measurable func-
tions. There is another notion closely related to NIP, introduced by Talagrand
in [Tal84] while studying Pettis integration. Suppose that X is a compact Haus-
dorff space and A C RX. Let p be a Radon probability measure on X. Given a
p-measurable set E C X, a positive integer k and real numbers a < b. we write:

Dy (A,E,q,b) = U{x € E2%: f(x21) < @, f(x21i41) > b for all i < k}
feA

We say that A is Talagrand p-stable if and only if for every p-measurable
set E C X of positive measure and for every a < b there is k > 1 such that
(W?)* (D (A, E,a,b)) < (u(E))?*. Notice that we work with the outer measure
because it is not necessarily true that the sets Dy (A, E, a,b) are p-measurable.
This is certainly the case when A is a countable set of continuous (or p-measurable)
functions.

The following lemma establishes that Talagrand stability is a way to ensure that
deep computations are definable by measurable functions. We include the proof for
the reader’s convenience.

Lemma 3.10. If A is Talagrand w-stable, then A is also Talagrand u-stable and
AC LX)
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Proof. First, observe that a subset of a p-stable set is p-stable. To show that A
is p-stable, observe that Dy (A,E,a,b) C Dy(A,E,a’,b’) where a < a’ < b’ <
b and E is a p-measurable set with positive measure. It suffices to show that
A C L£°(X,u). Suppose that there exists f € A such that f ¢ £°(X,u). By a
characterization of measurable functions (see 413G in [Fre03]), there exists a p-
measurable set E of positive measure and a < b such that u*(P) = u*(Q) = n(E)
where P ={x € E: f(x) < a} and Q ={x € E: f(x) > b}. Then, for any k > 1:
(PxQ)* C Dk({f}, E,a,b) so (u?*)*(Di({f} E,a,b)) = (u*(P)u*(Q))* = ((E))**.
Thus, {f} is not p-stable, but we argued before that a subset of a p-stable set must
be p-stable. O

We say that A is universally Talagrand stable if A is Talagrand p-stable for
every Radon probability measure it on X. A similar argument as before, yields the
following:

Theorem 3.11. Let (L,P,T") be a CCS satisfying the Extendibility Axiom. If
7tp © AlLpr,) is universally Talagrand stable for all P € P and all sizers ro, then
every deep computation is universally measurable sh-definable.

It is then natural to ask: what is the relationship between Talagrand stability and
the NIP? We know that Theorem 3.7 and Fremlin’s Dichotomy (463K in [Fre03])

imply:

Lemma 3.12. Let X be a compact Hausdorff space and A C C(X) be pointwise
bounded. If A is universally Talagrand stable, then A has the NIP.

Question 3.13. Is the converse true?

There is a delicate point in this question, as it may be sensitive to set-theoretic
axioms (even assuming countability of A).

Theorem 3.14 (Talagrand, Theorem 9-3-1(a) in [Tal84]). Let X be a compact
Hausdorff space and A C M, (X) be countable and pointwise bounded. Assume that
[0, 1] is not the union of < ¢ closed measure zero sets. If A has the NIP, then A is
universally Talagrand stable.

Theorem 3.15 (Fremlin, Shelah, [FS93]). It is consistent that there exists a count-
able pointwise bounded set of Lebesgue measurable functions with the NIP which is
not Talagrand stable with respect to Lebesgue measure.

APPENDIX: MEASURE THEORY

Given a set X, a collection X of subsets of X is called a o-algebra if £ contains
X and is closed under complements and countable unions. Hence, for example,
a o-algebra is also closed under countable intersections. Intuitively, a o-algebra
is a collection of sets in which we can define a o-additive measure. We call sets
in a o-algebra ~ measurable sets and the pair (X,X) a measurable space. If X
is a topological space, there is a natural o-algebra of subsets of X, namely the
Borel o-algebra B(X), i.e., the smallest o-algebra containing all open subsets of X.
Given a measurable space (X, L), a o-additive measure is a non-negative function
i : X — R with the property that p(0) = 0 and w(Up_gAn) = > oo H(AR)
whenever {A,, : n € N} C X is pairwise disjoint. We call (X, XZ, u) a measure space.
A o-additive measure is called a probability measure if w(X) = 1. A measure p
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is complete if for every A C B € L, u(B) = 0 implies A € X. In words, subsets
of measure-zero sets are always measurable (and hence, by the monotonicity of w,
have measure zero as well).

A special example of the preceding concepts is that of a Radon measure. If X is
a Hausdorff topological space, then a measure p on the Borel sets of X is called a
Radon measure if

e for every open set U, p(U) is the supremum of w(K) over all compact K C U,
that is, the measure of open sets may be approximated via compact sets;
and

e every point of X has a neighborhood U 3 x for which p(U) is finite.

Perhaps the most famous example of a Radon measure on R is the Lebesgue
measure of Borel sets. If X is finite, u(A) := |A| (the cardinality of A) defined a
Radon measure on X.

While not immediately obvious, sets can be measurable according to one mea-
sure, but non-measurable according to another. Given a measure space (X, Z, )
we say that a set E C X is w-measurable if there are A;B € £ such that ACECB
and p(B\A) = 0. The set of all p-measurable sets is a o-algebra containing X and
it is denoted by Z,.. A set E C X is universally measurable if it is p-measurable for
every Radon probability measure on X. It follows that Borel sets are universally
measurable.

Recall that if {X; : i € I} is a collection of topological spaces indexed by some
set I, then the product space X := [ [;<; Xi is endowed with the topology generated
by cylinders, that is, sets of the form [[;.; U; where each U; is open in X;, and
U; = Xj except for finitely many indices 1 € 1. If each space is measurable, say we
pair X; with a o-algebra X, then there are multiple ways to interpret the product
space X as a measurable space, but the interpretation we care about in this paper
is the so called cylinder o-algebra, as used in Lemma 3.5. Namely, let £ be the
o-algebra generated by sets of the form

J1Ci, Ciexi Ci=X for all but finitely many i € I.
iel
We remark that when I is uncountable and £; = B(X;) for all i € I, then X is,
in general, strictly smaller than B(X).
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